• Title/Summary/Keyword: Sub-controller

Search Result 481, Processing Time 0.024 seconds

Lateral Control of Vehicles Using Vision System

  • Kim, Eun-Joo;Kim, Chang-Sub;Ha, Sung-Gi;Yoon, Kang-Sub;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.6-101
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, We develop an algorithm that decides the distance and directions between the guide line that is made by a series of magnets and MR sensors of vehicle. LQG/LTR and Controller Design of Lateral Control System for a vehicle is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the controller provides more robustness property for t...

  • PDF

Hybrid PI Controller of IPMSM Drive using FAM Controller (FAM 제어기를 이용한 IPMSM 드라이브의 하이브리드 PI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.192-197
    • /
    • 2007
  • This paper presents Hybrid PI controller of IPMSM drive using fuzzy adaptive mechanism(FAM) control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid PI controller proposes a new method based self tuning PI controller. Hybrid PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Design of DSP(TMS320F240) Controller for Multi-axes Transportation System with BLDC Servo Motor (DSP(TMS320F240)를 이용한 BLDC서보 전동기 다축 이송시스템 제어기 설계)

  • 김민섭;구효원;최중경;권현아;신영호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.95-98
    • /
    • 2002
  • This paper presents a study on DSP(TMS320F240) controller design for multi-axes transportation system using BLDC servo motor. This BLDC servo motor controller was realized with DSP(Digital Signal Processor) and IPM (Intelligent Power Module). The multi-axes transportation system needs torque, speed, position control of servo motor for variable action. This paper implements those servo control with vector control and space vector modulation technique. As CPU of controller DSP(TMS320F240) is adopted because, it has PWM(Pulse Width Modulation) waveform generator, A/D(Analog to Digital) converter, SPI(Serial Peripheral Interface) port and input/output port etc. The controller of multi-axes transportation system consists of 3-level hierarchy structure that main host PC manages three sub DSP system which transfer downword command and are monitoring the states of end servo controllers. Each sub DSP system operates eight BLDC servo controllers which control BLDC servo motor using DSP and IPM Between host system and middle digital signal processor communicate with RS-422, between main processor and controller communicate with SPI port.

  • PDF

High performance Control of Induction Motor using Hybrid-PI Controller (Hybrid-PI 제어기를 이용한 유도전동기의 고성능 제어)

  • Choii, Jung-Sik;Ko, Jae-Sub;Kim, Kil-Bong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.260-262
    • /
    • 2006
  • This paper presents Hybrid-PI controller of induction motor drive using fuzzy control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid-PI controller proposes a new method based self tuning PI controller. Hybrid-PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

HBPI Controller of IPMSM using fuzzy adaptive mechanism (피지적응 메카니즘을 이용한 IPMSM의 HBPI 제어기)

  • Lee, Jung-Ho;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.210-212
    • /
    • 2006
  • This paper presents Hybrid PI(HBPI) controller of IPMSM drive using fuzzy adaptive mechanism control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, HBPI controller proposes a new method based self tuning PI controller. HBPI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Delay-dependent Fuzzy $H_2/H_{\infty}$ Controller Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 퍼지 $H_2/H_{\infty}$ 제어기 설계)

  • 김종래;정은태
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.19-27
    • /
    • 2004
  • A delay dependent fuzzy $H_2/H_{\infty}$ controller design method for delayed fuzzy dynamic systems is considered. Using delay-dependent Lyapunov function, the asymptotical stability and $H_2/H_{\infty}$ performance problem are discussed. A sufficient condition for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Design of the H Current Controller Based on the PSO Algorithm for Reducing the Current Ripple Caused by the Saliencies of SPMSM (SPMSM 인덕턴스 돌극성에 의한 전류리플 저감을 위한 PSO 알고리즘 기반의 H 전류 제어기 설계)

  • Lee, Kwan-Hyung;Young, Jeon-Chan;Lim, Dong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1425-1435
    • /
    • 2013
  • The useful method for determining parameters of weighting functions used to design the $H_{\infty}$ current controller for attenuating the current ripple due to saliencies which SPMSM(Surface Permanent Magnet Synchronous Motor) also incorporates is described. To analyze the effect, the current ripple due to the structural and the saturation saliencies, the SPMSM model with nonlinear inductance function depending on the two independent variables, rotor position and stator current is simulated. After analysis, parameters of the weighting functions for $H_{\infty}$ current controller is selected to satisfy the robust stability, robust performance and specific performance in time and frequency domain by using the PSO(Particle Swarm Optimization) algorithm in the linear SPMSM model. Especially, the robust performance is proved that the selected weighting functions play a role in reducing the current ripple caused by the saliencies of SPMSM at the desired frequency range by the simple experiment.

A New Design Method for T-S Fuzzy Controller with Pole Placement Constraints

  • Joh, Joongseon;Jeung, Eun-Tae;Chung, Won-Jee;Kwon, Sung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.72-80
    • /
    • 1997
  • A new design method for Takagi-Sugeno (T-S in short) fuzzy controller which guarantees global asymptotic stability and satisfies a desired performance is proposed in this paper. The method uses LMI(Linear Matrix Inequality) approach to find the common symmetric positive definite matrix P and feedback fains K/sub i/, i= 1, 2,..., r, numerically. The LMIs for stability criterion which treats P and K'/sub i/s as matrix variables is derived from Wang et al.'s stability criterion. Wang et al.'s stability criterion is nonlinear MIs since P and K'/sub i/s are coupled together. The desired performance is represented as $ LMIs which place the closed-loop poles of $ local subsystems within the desired region in s-plane. By solving the stability LMIs and pole placement constraint LMIs simultaneously, the feedback gains K'/sub i/s which gurarntee global asymptotic stability and satisfy the desired performance are determined. The design method is verified by designing a T-S fuzzy controller for an inverted pendulum with a cart using the proposed method.

  • PDF

L-gained State Feedback Control for Continuous Fuzzy Systems with Time-Delay (시간 지연 연속 시간 퍼지 시스템에 대한 L-이득값 상태 궤환 제어)

  • Lee, Dong-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.762-767
    • /
    • 2008
  • This paper introduces a $L_{\infty}$-gain state feedback fuzzy controller design for the time delay nonlinear system represented by Takagi-Sugeno(T-S) fuzzy model. First, the T-S fuzzy model is employed to represent the time delay nonlinear system. Next based on the fuzzy model, a fuzzy state feedback controller is developed to achieve $L_{\infty}$-gain performance. Finally, sufficient conditions are derived for $L_{\infty}$-gain performance. The sufficient conditions are formulated in the format of linear matrix inequalities (LMIs). The effectiveness of the proposed controller design methonology is finally demonstrated through numerical simulations.