• Title/Summary/Keyword: Sub-condenser

Search Result 39, Processing Time 0.026 seconds

Performance Characteristics of Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System (자동차 공조시스템에서 건조기 일체형 응축기의 성능특성)

  • 김경훈;김석우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.205-210
    • /
    • 2004
  • Sub-cooled hybrid condenser(SCHC) which have been developed through this study is an appliance of integrating a condenser with a receiver dryer, which were previously separated. It is supposed that the development of sub-cooled hybrid condenser will be able to reduce not only weight, size, production process and cost, but also quite improve in capability, which will be of great use for the technological development and research of an air conditioning system whose importance is higher in a car. Through the present study it was found that the developed SCHC increases in the degree of sub-cooling by 10∼100% compared to conventional condenser. The excessive sub-cool has improved the cooling performance by 10%, and that leads to the reduction in evaporator outlet air temperature $1.5^{\circ}C$. Additionally, it is expected that sub-cooled hybrid condenser weights less by 100g than the previous condensers which has equal super heat.

Development on the Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System (자동차 냉방시스템에서 건조기 일체형 응축기 개발)

  • 김경훈;장주섭;박종일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.70-76
    • /
    • 2003
  • An experimental study was performed to understand the heat transfer and fluid dynamic characteristics of Sub-Cooled Hybrid Condenser (SCHC), which conventional condenser and receiver dryer are integrated into. SCHC also employs a sub-cooled refrigerant passages at the end of the condenser in order to supply perfect liquid refrigerant to the expansion unit. Throughout the present study, it was found that the developed SCHC increases in the degree of sub-cooling by 10~100% compared to conventional condenser. The excessive sub-cooling has improved the cooling performance by 10%, and that leads reduction in evaporator outlet air temperature by $1.5^{\circ}C$. Also found through the study is that the refrigerant pressure drop across SCHC is fairly increased due to insertion of the desiccant cartridge in the receiver tank which is composed of zeolite, filter and supporter plate.

Numerical Simulation of Plate Finned-Tubes Condenser (평판휜-관 응축기의 수치 시뮬레이션)

  • Min, M.S.;Choi, S.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.193-205
    • /
    • 1994
  • A simulation program of the plate finned-tubes condenser widely used in the air conditioning system was developed. The program took into account the variations of the flow properties and fluid friction factor of refrigerant, and the heat transfer coefficients of refrigerant and air sides. The program was applied to a copper tube condenser which has outside diameter of 10.05mm, inside diameter of 9.35mm, length of 5.20m and three rows arraied staggered. Simulation results were such that refrigerant was super-heated state from the entrance to the 0.14m point, two-phase flow from the 0.14m point to the 4.10m point, sub-cooled state from the 4.10m point to the outlet. The degree of sub-cooled was $6.1^{\circ}C$. The variations of refrigerant quality, temperature, pressure, velocity, specific enthalpy, specific volume and air temperature, tube temperature were showed.

  • PDF

Transient Computer Simulation of Evaporation and Condenser in an Automotive Air-Conditioning System (비정상과정에서 자동차 에어컨의 증발기 및 응축기의 컴퓨터 시뮬레이션)

  • Oh, Sang-Han;Shin, Dong-Woo;Won, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.19-24
    • /
    • 2000
  • The objective of this study is to develope a computer simulation model and estimate theoretically the transient performance characteristics of heat exchangers in an automotive air-conditioning system. To do that, the mathematical modelling of heat exchangers, such as evaporator and condenser, is presented first of all. For detail calculation, evaporator and condenser are divided into many sub-sections. Each sub-section is an elemental volume for transient modelling. The elemental volume is assumed to consist of three components, refrigerant, tube with fin, and air, and various properties including temperatures of three components are determined step along sub-sections. The properties of refrigerant R134a and air are calculated directly in the program. The heat transfer coefficients and pressure drop in single or two phase are also calculated by suitable empirical correlations. The overall tendencies of the simulation results were agreed well with those of actual situation.

  • PDF

A Study on the Optimization of Condenser according to Design Factors in Heat Pump System (열(熱)펌프시스템에서 각종(各種) 설계인자(設計因子)들에 따른 응축기(凝縮器)의 최적설계(最的設計)에 관한 연구(硏究))

  • Lee, Y.S.;Kim, N.K.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.408-417
    • /
    • 1988
  • This study optimized the condenser dimension of heat pump system with the heat sources which are solar irradiation and ambient air. At first, the author selected the principal design factors influencing the performance of heat pump system. And the author considered the variation of condenser dimension according to the variation of the selected design factors, that is, ambient air temperature, condenser temperature, degree of superheating, degree of sub-cooling and irradiation. As a result this study, among refrigerants R12, R22 and R500, refrigerant R22 has more heating output than R12 and R500, and the coefficient of performance on this heat pump system is not greatly influenced by the degree of superheating and degree of sub cooling. The ambient air temperature is below $5^{\circ}C$ at balance point and the optimal tube length of condenser dimension is about 3.8 m. Also the author gained the optimal design diagram for the optimization of condenser dimension according to various design factors.

  • PDF

A Study on Refrigeration Performance of Vehicle HVAC System for Sub-Cooling Improvement (서브쿨링향상을 위한 차량공조 시스템의 냉방성능에 관한 연구)

  • 박만재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The general method which changes sub-cooling of refrigerant is to control the expansion valve in the state of mixing with liquid and gas phase. In this study, the performance of vehicle air conditioning system is to control either changing the expansion valve or adding the sub condenser. Therefore, this research finally is tested in case of the fourth test procedure, the second test was suitable for a valve opening area due to adjusting valve slope in comparison with the other test. The other test except for the second test happened to do liquid back due to the excessively liquified refrigerant into the system. In conclusion, the second test was appeared not to be influenced upon liquid back, and it is to expect positive performance by controlling an expansion valve. Therefore, it will be also useful to research for an increase of compressor efficiency Performance improvement of an air conditioner is to reinforce the suction performance of the evaporator and increase the sub-cooling, which make use of the sub-cooling system.

The steam turbine condenser pressure optimization with different heat rate correction curves (각기 다른 열소비율 보정곡선을 갖는 증기터빈의 최적 복수기 운전압력 설정)

  • Cho, Cheon-Hwan;Baek, Nam-Ho;Hur, Jin-Hyek;Lee, Jae-Heon;Moon, Seung-Jae;Yoo, Ho-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.224-227
    • /
    • 2008
  • The present study performs a test of a change in a condenser pressure on two kinds of power plants having different condenser pressure-heat rate correction curve and evaluates the results. According to a result of the test, it is confirmed that a sub-critical drum type steam power plant is optimally operated at the condenser pressure of 38㎜Hga that is designed, even during winters. On the other hand, it can be found that a supercritical once through type steam power plant operated at the condenser pressure that is reduced below a design value, that is, up to 28㎜Hga during winters is advantageous in view of turbine efficiency and is operated without a problem in facility operation such as moisture erosion, turbine vibration, etc. Also, the present study compares and reviews a condenser pressure-heat rate correction curve proposed by a manufacturer and a test value. The present study proposes optimum condenser operation pressure capable of concurrently satisfying the stable operation and efficiency improvement of the power plant facility that is operating, making it possible to support an efficient operation of a power plant.

  • PDF

A study on the Cold-heat Storage System for Operation Status Monitoring of Showcase (쇼케이스 운전상태를 고려한 축냉시스템 적용타당성 연구)

  • Lee, Eun-Ji;Lee, Dong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1261-1266
    • /
    • 2008
  • Experimental study was performed to understand the operations of a showcase working in a discount store. Temperatures of evaporation, condenser were measured and also electric power consumption of compressor were measured. The purpose of this study is to application use of cold-heat storage systems operated the showcase. At the condition using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, hence the running time of the compressor was effectively decreased. In other words, this study showed that power consumption during daytime can be transferred to the midnight for making use of the refrigerant sub-cooling. So the operating characteristics of the showcase system under various working conditions were analyzed and discussed.

  • PDF

Dynamic Analysis of Cool Thermal Storage Air Conditioning System (빙축열 에어컨의 동적 사이클 해석)

  • Koh, Jae-Yoon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • In this study, dynamic characteristics analysis of AC system is investigated using a cool thermal storage system. A analysing program for cool thermal storage AC system is developed. The performances are studied by several variables and dynamic characteristics. Comparing the result at conventional operation condition with that at the condition using ice storage system, this study showed the effects of the sub cooled degree, superheated degree, efficiency of compressor and evaporating temperature. At the condition using thermal storage system, the thermal storage process was operated during midnight being not needed the cooling of the AC unit through the continuous running of the condenser. The refrigerant was sub-cooled using stored energy after being discharged from the air source condenser during the daytime. The COP was increased owing to the sub-cooling of refrigerant during daytime, thus the power consumption was effectively decreased.

Experimental Study of Showcase Using Cold Storage System (축냉 시스템을 적용한 쇼케이스 운전에 대한 실험적 연구)

  • Lee, Eun-Ji;Lee, Dong-Won;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1111-1116
    • /
    • 2008
  • The purpose of this study is to maintain high efficiency and reasonable use of cold-heat storage systems operated the showcase. An experimental study is carried out to manufacture the showcase system in a laboratory. Comparing the result at general operation condition with that at the new condition using ice storage system, this study showed the effects of the refrigerant sub-cooling, and with using inverter. At the condition using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, hence the running time of the compressor was effectively decreased. In other words, this study showed that power consumption during daytime can be transferred to the midnight for making use of the refrigerant sub-cooling.

  • PDF