• Title/Summary/Keyword: Sub-bottom Profile

Search Result 14, Processing Time 0.016 seconds

Bedform Morphology of the Continental Shelf Sandy Sediments Around the Korean Peninsula (한반도(韓半島) 주위(周圍) 대륙붕(大陸棚) 사질(砂質) 퇴적물(堆積物)의 표면유동구조(表面流動構造))

  • SUK, BONG-CHOOL;KAGAMI, HIDEO;TAIRA, ASAHIKO
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.239-247
    • /
    • 1994
  • Bedform morphology of the giant ripples have been studied on the continental shelf of the Yellow Sea, East China sea and Korea-Tsushima Strait on the basis of side-scan sonar image, sub-bottom profile, sedimentary facies, geomorphology evidence and hydrology. There are well developed giant ripples ranging from 100 to 500 m in wavelengths and from 2 to 10 m in wave height at nine sites in the study area, which are covered by medium to fine sand. Most of them have been formed under the present hydrologic regime where the tidal currents and local currents or turbulence flows are superimposed. In the study area, giant ripples are produced on two different environments. One is at the geomorphic narrow zone such as the Korea Strait where currents are accelerated by the topographic effects, while the other is the sandy flat plain where tidal currents and local currents are harmonized.

  • PDF

Application of Ground Penetrating Radar for Assessing Riverbed Variation Near Bridge Piers (지하투과레이다를 이용한 교각 주변의 하상변화 조사)

  • Park, In-Chan;Cho, Won-Cheol;Lee, Jong-Kook
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2005
  • The assessment of erosional and depositional patterns near bridge piers is essential to understand the fluvial scour process. Geophysical surveys are particularly effective in determining the riverbed variations in a river and may also be of value for obtaining the previous scour history below the riverbed profile. In this study, GPR (Ground Penetrating Radar), as a non-destructive geophysical technique, was used to assess the existence and depth of existing and infilled scour thickness, streambed materials, and pre- and post- scour surfaces at the bridge piers in Han River, June 2002 and October 2002. The GPR acquisition system used for obtaining profiles of the shallow subsurface deposits was a portable GSSI SIR 2000 system with 100 and 400 MHz antennas. The GPR data obtained along the 24 bridge piers in the flow direction of the river and in the surroundings of 5 bridge piers were compared and presented in this study. It is concluded that GPR surveys can be effective in determining both the water depth and sub-bottom geological structure near the bridge piers and abutments provided that the appropriate instrumentation and operational procedures are applied.

Gravity and Magnetic Model Study of Block Ⅵ-2, Offshore Korea (한국근해 제 6광구에 대한 중력 및 자력 모델 연구)

  • Baag Czango;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-46
    • /
    • 1993
  • Two-dimensional gravity and magnetic models were constructed for seismic profiles in Block Ⅵ-2, offshore Korea. For each seismic profile, a longer length model showing geometric configurations of all employed polygonal bodies and an expanded version of the area of interests were made. The results of this modeling study indicate 1) that the depth to the deeper basement surface appear to be shallower than indicated in the seismic sections, 2) that the Middle Miocene section (the bottom formations in the models) appears to contain significant amounts of volcanic materials, 3) that identification and/or determination of depth to the top of basement is difficult in the study area due to thick volcanic materials in the lowermost formation (Middle Miocene), and 4) that the study area is unfavorable for hydrocarbon generation and accumulation due to wide spread volcanic activities during the Middle Miocene Epoch. The maximum calculated depth to the magnetic basement in the study area is approximately $4{\cal}km$ sub-sea.

  • PDF

Suspension of Sediment over Swash Zone (Swash대역에서의 해빈표사 부유거동에 관한 연구)

  • Cho, Yong Jun;Kim, Kwon Soo;Ryu, Ha Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.95-109
    • /
    • 2008
  • We numerically analyzed the nonlinear shoaling, a plunging breaker and its accompanying energetic suspension of sediment at a bed, and a redistribution of suspended sediments by a down rush of preceding waves and the following plunger using SPH with a Gaussian kernel function, Lagrangian Dynamic Smagorinsky model (LDS), Van Rijn's pick up function. In that process, we came to the conclusion that the conventional model for the tractive force at a bottom like a quadratic law can not accurately describe the rapidly accelerating flow over a swash zone, and propose new methodology to accurately estimate the bottom tractive force. Using newly proposed wave model in this study, we can successfully duplicate severely deformed water surface profile, free falling water particles, a queuing splash after the landing of water particles on the free surface and a wave finger due to the structured vortex on a rear side of wave crest (Narayanaswamy and Dalrymple, 2002), a circulation of suspended sediments over a swash zone, net transfer of sediments clouds suspended over a swash zone toward the offshore, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.