• Title/Summary/Keyword: Sub-aperture stitching

Search Result 6, Processing Time 0.02 seconds

Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization

  • Chen, Yiwei;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.341-344
    • /
    • 2014
  • This study proposes a modified sub-aperture stitching algorithm, which uses an image sharpening algorithm and particle swarm optimization to improve the stitching accuracy. In sub-aperture stitching interferometers with high positional accuracy, the high-frequency components of measurements are more important than the low-frequency components when compensating for position errors using a sub-aperture stitching algorithm. Thus we use image sharpening algorithms to strengthen the high-frequency components of measurements. When using image sharpening algorithms, sub-aperture stitching algorithms based on the least-squares method easily become trapped at locally optimal solutions. However, particle swarm optimization is less likely to become trapped at a locally optimal solution, thus we utilized this method to develop a more robust algorithm. The results of simulations showed that our algorithm compensated for position errors more effectively than the existing algorithm. An experimental comparison with full aperture-testing results demonstrated the validity of the new algorithm.

Fast Sub-aperture Stitching Algorithm Using Partial Derivatives

  • Chen, Yiwei;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.84-87
    • /
    • 2015
  • For large optical elements which are tested by many sub-apertures, it takes too much time for a sub-aperture stitching algorithm to get the stitching result. To solve this problem, we propose a fast sub-aperture stitching algorithm to quickly compensate for piston, tilt, and defocus errors. Moreover, the new algorithm is easy to understand and program. We use partial derivatives of measurement data to separately solve piston, tilt, and defocus errors. First, we show that the new algorithm has a lower time complexity than the currently used algorithm. Although simulation results indicate that the accuracy of the new algorithm is lower than the current algorithm in all 20 simulations, our experimental results validate the algorithm and show it is sufficiently accurate for general use.

DEVELOPMENT OF NEW STITCHING INTERFEROMETRY FOR THE SPICA TELESCOPE

  • Yamanaka, Asa;Kaneda, Hidehiro;Yamagishi, Mitsuyoshi;Kondo, Toru;kokusho, Takuma;Tanaka, Kotomi;Hanaoka, Misaki;Nakagawa, Takao;Kawada, Mitsunobu;Isobe, Naoki;Arai, Toshiaki;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.363-365
    • /
    • 2017
  • The telescope to be onboard SPICA (Space Infrared Telescope for Cosmology and Astrophysics) has an aperture diameter of 2.5 m and its imaging performance is to be diffraction-limited at a wavelength of $20{\mu}m$ at the operating temperature of <8 K. Because manufacturing precise autocollimating flat mirrors (ACFs) with sizes comparable to the SPICA telescope is not technically feasible, we plan to use sub-aperture stitching interferometry through ACFs for optical testing of the telescope. We have verified the applicability of the sub-aperture stitching technique to the SPICA telescope by performing stitching experiments in a vacuum at a room temperature, using the 800-mm telescope and a 300-mm ACF. We have also developed a new method to reduce uncertainties possibly caused by cryogenic and gravitational deformations of ACFs.

3D Surface and Thickness Profile Measurements of Si Wafers by Using 6 DOF Stitching NIR Low Coherence Scanning Interferometry (6 DOF 정합을 이용한 대 영역 실리콘 웨이퍼의 3차원 형상, 두께 측정 연구)

  • Park, Hyo Mi;Choi, Mun Sung;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • In this investigation, we describe a metrological technique for surface and thickness profiles of a silicon (Si) wafer by using a 6 degree of freedom (DOF) stitching method. Low coherence scanning interferometry employing near infrared light, partially transparent to a Si wafer, is adopted to simultaneously measure the surface and thickness profiles of the wafer. For the large field of view, a stitching method of the sub-aperture measurement is added to the measurement system; also, 6 DOF parameters, including the lateral positioning errors and the rotational error, are considered. In the experiment, surface profiles of a double-sided polished wafer with a 100 mm diameter were measured with the sub-aperture of an 18 mm diameter at $10\times10$ locations and the surface profiles of both sides were stitched with the sub-aperture maps. As a result, the nominal thickness of the wafer was $483.2{\mu}m$ and the calculated PV values of both surfaces were $16.57{\mu}m$ and $17.12{\mu}m$, respectively.

Rotational Prism Stitching Interferometer for High-resolution Surface Testing (고해상도 표면 측정을 위한 회전 프리즘 정합 간섭계)

  • In-Ung Song;Woo-Sung Kwon;Hagyong Khim;Yun-Woo Lee;Jong Ung Lee;Ho-Soon Yang
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • The size of an optical surface can significantly affect the performance of an optical system, and high spatial frequency errors have a greater impact. Therefore, it is crucial to measure the surface figure error with high frequency. To address this, a new method called rotational prism stitching interferometer (RPSI) is proposed in this study. The RPSI is a type of stitching interferometer that enhances spatial resolution, but it differs from conventional stitching interferometers in that it does not require the movement of either the mirror tested or the interferometer itself to obtain sub-aperture interferograms. Instead, the RPSI uses a beam expander and a rotating Dove prism to select particular sub-apertures from the entire aperture. These sub-apertures are then stitched together to obtain a full-aperture result proportional to the square of the beam expander's magnification. The RPSI's effectiveness was demonstrated by measuring a 40 mm diameter spherical mirror using a three-magnification beam expander and comparing the results with those obtained from a commercial interferometer. The RPSI achieved surface testing results with nine times higher sampling density than the interferometer alone, with a small difference of approximately 1 nm RMS.

Chirp Stitching Technique for Wideband Signals of the Spaceborne High Resolution Synthetic Aperture Radar (위성탑재 고해상도 합성개구레이더용 광대역 신호 획득을 위한 ? 스티칭 기술 연구)

  • 권오주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1777-1784
    • /
    • 2000
  • In this paper we suggested the chirp stitching algorithm and transmitter/receiver channel to a spaceborne high resolution SAR which enables wideband signal generation and processing with minimum hardware requirement. The transmitter channel generates two sub-band signals and then generate a wideband signal using chirp stitching algorithm and the receiver channel divides a wideband signal into two sub-band signals in order to overcome the high speed data handling capability of this spaceborne systems. We generated and processed a 100 MHz wideband signal evaluated the performance and verified the feasibility of the application of this chirp stitching algorithm and transmitter/receiver channel to spaceborne high resoultion SAR.

  • PDF