• Title/Summary/Keyword: Sub-Sampling

Search Result 568, Processing Time 0.027 seconds

Sub-sampling Technique to Improve the Measurement Speed of White Light Scanning Interferometry (백색광 주사 간섭계의 측정 속도 개선을 위한 서브 샘플링 기법 연구)

  • Chyun, In-Bum;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.999-1006
    • /
    • 2014
  • In this investigation, we explain the sub-sampling technique of white light scanning interferometry (WLSI) to improve the measurement speed. In addition to the previous work using Fourier domain analysis, several methods to extract the height from the correlogram of WLSI are described with the sub-sampling technique. Especially, Fourier-inverse Fourier transformation method adopting sub-sampling technique is proposed and the phase compensation technique is verified with simulation and experiments. The main advantage of sub-sampling is to speed up the measurements of WLSI but the precision such as repeatability is slightly poor. In case of measuring the sample which has high height step or difference, the proposed technique can be widely used to reduce the measurement time.

COMPARISON OF SUB-SAMPLING ALGORITHM FOR LRIT IMAGE GENERATION

  • Bae, Hee-Jin;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.109-113
    • /
    • 2007
  • The COMS provides the LRIT/HRIT services to users. The COMS LRIT/HRIT broadcast service should satisfy the 15 minutes timeliness requirement. The requirement is important and critical enough to impact overall performance of the LHGS. HRIT image data is acquired from INRSM output receiving but LRIT image data is generated by sub-sampling HRIT image data in the LHGS. Specially, since LRIT is acquired from sub-sampled HRIT image data, LRIT processing spent more time. Besides, some of data loss for LRIT occurs since LRIT is compressed by lossy JPEG. Therefore, algorithm with the fastest processing speed and simplicity to be implemented should be selected to satisfy the requirement. Investigated sub-sampling algorithm for the LHGS were nearest neighbour algorithm, bilinear algorithm and bicubic algorithm. Nearest neighbour algorithm is selected for COMS LHGS considering the speed, simplicity and anti-aliasing corresponding to the guideline of user (KMA: Korea Meteorological Administration) to maintain the most cloud itself information in a view of meteorology. But the nearest neighbour algorithm is known as the worst performance. Therefore, it is studied in this paper that the selection of nearest neighbour algorithm for the LHGS is reasonable. First of all, characteristic of 3 sub-sampling algorithms is studied and compared. Then, several sub-sampling algorithm were applied to MTSAT-1R image data corresponding to COMS HRIT. Also, resized image was acquired from sub-sampled image with the identical sub-sampling algorithms applied to sub-sampling from HRIT to LRIT. And the difference between original image and resized image is compared. Besides, PSNR and MSE are calculated for each algorithm. This paper shows that it is appropriate to select nearest neighbour algorithm for COMS LHGS since sub-sampled image by nearest neighbour algorithm is little difference with that of other algorithms in quality performance from PSNR.

  • PDF

Compensation of Timing Offset and Frequency Offset in the Multi-Band Receiver with Sub-Sampling Method (Sub-Sampling 방식의 다중 대역 수신기에서 타이밍 오프셋과 주파수 오프셋 보상)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.501-509
    • /
    • 2011
  • Software defined radio(SDR) has a goal that places the analog-to-digital converter(ADC) as near the antenna as possible. But current technique actually can't do analog-to-digital converting about RF band signals. So one method is studying that samples RF band signals to IF band. One of the ways Sub-Sampling technique can convert signals from RF band to IF band without oscillator. If Sub-Sampling technique is used, over 2 bands can convert signals from RF band to IF band. But due to the filter performance in RF band, it is possible to generate interference between signals that is converted in low frequency band. The effect degrades performance. In this paper, we propose one method that uses time division multiplexing(TDM) method as a solution to avoid interference between signals. By doing TDM and Sub-Sampling at the same time that method can get signals without large changes of structures.

A Cost Effective Reference Data Sampling Algorithm Using Fractal Analysis

  • Lee, Byoung-Kil;Eo, Yang-Dam;Jeong, Jae-Joon;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.23 no.3
    • /
    • pp.129-137
    • /
    • 2001
  • A random sampling or systematic sampling method is commonly used to assess the accuracy of classification results. In remote sensing, with these sampling methods, much time and tedious work are required to acquire sufficient ground truth data. So, a more effective sampling method that can represent the characteristics of the population is required. In this study, fractal analysis is adopted as an index for reference sampling. The fractal dimensions of the whole study area and the sub-regions are calculated to select sub-regions that have the most similar dimensionality to that of the whole area. Then the whole area's classification accuracy is compared with those of sub-regions, and it is verified that the accuracies of selected sub-regions are similar to that of whole area. A new kind of reference sampling method using the above procedure is proposed. The results show that it is possible to reduce sampling area and sample size, while keeping the same level of accuracy as the existing methods.

  • PDF

RANDOM SAMPLING AND RECONSTRUCTION OF SIGNALS WITH FINITE RATE OF INNOVATION

  • Jiang, Yingchun;Zhao, Junjian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.285-301
    • /
    • 2022
  • In this paper, we mainly study the random sampling and reconstruction of signals living in the subspace Vp(𝚽, 𝚲) of Lp(ℝd), which is generated by a family of molecules 𝚽 located on a relatively separated subset 𝚲 ⊂ ℝd. The space Vp(𝚽, 𝚲) is used to model signals with finite rate of innovation, such as stream of pulses in GPS applications, cellular radio and ultra wide-band communication. The sampling set is independently and randomly drawn from a general probability distribution over ℝd. Under some proper conditions for the generators 𝚽 = {𝜙λ : λ ∈ 𝚲} and the probability density function 𝜌, we first approximate Vp(𝚽, 𝚲) by a finite dimensional subspace VpN (𝚽, 𝚲) on any bounded domains. Then, we prove that the random sampling stability holds with high probability for all signals in Vp(𝚽, 𝚲) whose energy concentrate on a cube when the sampling size is large enough. Finally, a reconstruction algorithm based on random samples is given for signals in VpN (𝚽, 𝚲).

Determination of Sampling Points Based on Curvature distribution (곡률 기반의 측정점 결정 알고리즘 개발)

  • 박현풍;손석배;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.295-298
    • /
    • 2000
  • In this research, a novel sampling strategy for a CMM to inspect freeform surfaces is proposed. Unlike primitive surfaces, it is not easy to determine the number of sampling points and their locations for inspecting freeform surfaces. Since a CMM operates with slower speed in measurement than optical measuring devices, it is important to optimize the number and the locations of sampling points in the inspection process. When a complete inspection of a surface is required, it becomes more critical. Among various factors to cause shape errors of a final product, curvature characteristic is essential due to its effect such as stair-step errors in rapid prototyping and interpolation errors in NC tool paths generation. Shape errors are defined in terms of the average and standard deviation of differences between an original model and a produced part. Proposed algorithms determine the locations of sampling points by analyzing curvature distribution of a given surface. Based on the curvature distribution, a surface area is divided into several sub-areas. In each sub-area, sampling points are located as further as possible. The optimal number of sub-areas. In each sub-area, sampling points are located as further as possible. The optimal number os sub-areas is determined by estimating the average of curvatures. Finally, the proposed method is applied to several surfaces that have shape errors for verification.

  • PDF

Sub-Nyquist Nonuniform Sampling and Perfect Reconstruction of Speech Signals (음성신호의 Sub-Nyquist 비균일 표준화 및 완전 복구에 관한 연구)

  • Lee, He-Young
    • Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.153-170
    • /
    • 2005
  • The sub-Nyquist nonuniform sampling (SNNS) and the perfect reconstruction (PR) formula are proposed for the development of a systematic method to obtain minimal representation of a speech signal. In the proposed method, the instantaneous sampling frequency (ISF) varies, depending on the least upper boundary of spectral support of a speech signal in time-frequency domain (TFD). The definition of the instantaneous bandwidth (IB), which determines the ISF and is used for generating the set of samples that represent continuous-time signals perfectly, is given. Also, the spectral characteristics of the sampled data generated by the sub-Nyquist nonuniform sampling method is analyzed. The proposed method doesn't generate the redundant samples due to the time-varying property of the instantaneous bandwidth of a speech signal.

  • PDF

The review on standard method of microplastics in soil and groundwater (토양, 지하수 중 미세플라스틱 분석법에 관한 고찰)

  • JongBeom Kwon;Hyeonhee Choi;Sunhwa Park
    • Analytical Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.174-188
    • /
    • 2024
  • This review summarized research trends regarding sample collection methods, pretreatment method, and types of analysis devices for microplastics (MPs) in soil and groundwater matrices. Soil sampling considers the selection of sampling location, depth, and volume. The typically sampling depth is within 15 cm (topsoil), and about 1 kg of mixed each sample. Among spot sampling and continuous flow sampling, groundwater sampling mainly used a continuous flow sampling, with collection rates 2 to 6 L/min in the range of 300~1,000 L, and followed by immediate on-situ filtration. Pretreatment method, applied to soil and groundwater, consist of organic digestion and density separation. In the organic digestion method, H2O2 is recommended among H2O2, acidic, alkaline, and enzymatic method. NaCl is primarily used as a reagent in density separation. However, depending on the density of MPs, other regents can be selectively used like ZnCl2, ZnBr2, and etc. Representative analysis device includes Fourier Transform Infrared (FTIR) and Raman spectroscopy for non-destructive analysis and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) for destructive analysis. µ-FTIR and Raman can count MPs of larger than 10 and 1 ㎛, and analyze MPs materials. However, it is need to sufficiently remove interference, like organic matter, in spectroscopic analysis using essential pretreatment method. Py-GC/MS is being continuously researched because it doesn't require complex pretreatment method and allows quantitative analysis of specific materials.

Cooperative Spectrum Sensing Utilizing Sub-Nyquist Sampling in Cognitive Radio Networks (인지 무선 네트워크에서 Sub-Nyquist 샘플링을 활용한 협력 스펙트럼 센싱 기법)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1234-1238
    • /
    • 2015
  • We propose cooperative spectrum sensing schemes based on sub-Nyquist sampling. As compressed sensing has recently attracted great attention, sparsity order estimation techniques also has been widely investigated. Thus, assuming that the sparsity order of channel occupancy can be obtained, we mathematically analyze the detection performance of sub-Nyquist sampling schemes according to various sampling rates and cooperative spectrum sensing schemes. Simulation results verify the performance of the proposed schemes.

Perfect Reconstruction in Sub-Nyquist Nonuniform Sampling of Signals with Known upper Time-frequency Boundary (비 균일 표본화 신호의 완전 복구에 관한 연구)

  • 이희영;정현권
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.9-12
    • /
    • 2002
  • The problem of sub-Nyquist nonuniform sampling for the perfect reconstruction of signals with time-varying spectral contents is studied. The signals are assumed to have a known instantaneous bandwidth in time-frequency domain. As the function of time, the nonuniform sampling pattern of a given signal, that is, the instantaneous sampling frequency is determined by the observation of instantaneous bandwidth based on time-frequency analysis. The proposed sampling pattern guarantees the perfect reconstruction of nonuniform sampled signals under Nyquist-sampling rate in average.

  • PDF