• Title/Summary/Keyword: Sub-Orbital

Search Result 96, Processing Time 0.024 seconds

Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO3

  • Jang, J. S.;Borse, P. H.;Lee, J. S.;Lim, K. T.;Jung, O. S.;Jeong, E. D.;Bae, J. S.;Kim, H. G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.95-99
    • /
    • 2011
  • $CaTi_{1-x}Fe_xO_3(0{\leq}x{\leq}0.4)$ solid solution photocatalysts were synthesized by iron doping during the conventional solid state reaction at $1100^{\circ}C$ for 5 h and characterized by ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction, morphological analysis. We found that $CaTi_{1-x}Fe_xO_3$ samples not only absorb UV but also the visible light photons. This is because the Fe substitution at Ti-site in $CaTi_{1-x}Fe_xO_3$ lattice induces the band transition from Fe3d to the Fe3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $CaTiO_3$ samples for hydrogen production under UV light irradiation decreased with the increase in the Fe concentration. There exists an optimized concentration of iron in $CaTiO_3$, which yields a maximum photocatalytic activity under visible light ($\lambda\geq420nm$) photons.

Effects of iron atom, substrate on two-dimensional C2N crystals

  • Noh, Min Jong;Kim, Yong Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.288-291
    • /
    • 2016
  • Recently, there has been a lot of researches related to two-dimensional (2D) materials due to their new properties and applications emerging upon 2D confinement. A new type of graphene like two-dimensional layer material, nitrogenated holey two-dimensional structure C2N-h2D, that is possession of evenly distributed holes and nitrogen atoms with proper bandgap has been synthesized. Previous calculation studies already have shown that the variance of the orbital interaction, band structure of few-layer C2N-h2D suggests that interlayer coupling does play an important role in its electronic properties. In this point, using first-principles density functional theory calculation, we here explore the effect of porous embedded iron atom and iron substrate on encapsulated few layer C2N-h2D. We show the atomic structures and the corresponding electronic structures of Fe@C2N to elucidate the effect of iron. Finally, this study demonstrates that embedded iron C2N has AA-stacking as most favorable stacked structure in contrast to pure C2N. In addition, iron substrate modifies its encapsulated C2N from semi-metallic states to metallic state.

  • PDF

XMCD and PES study of a compensated-ferrimagnetic half-metal Mn3Ga

  • Seong, Seungho;Lee, Eunsook;Kim, Hee Yeon;Kim, Younghak;Baik, Jaeyoon;Kang, J.S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1190-1195
    • /
    • 2018
  • By employing soft X-ray magnetic circular dichroism (XMCD), soft X-ray absorption spectroscopy (XAS), and photoemission spectroscopy (PES), we have investigated the electronic structure of the candidate zero-moment half-metallic $Mn_3Ga$. We have studied the ball-milled and annealed $Mn_3Ga$ powder samples that exhibit nearly zero magnetization. Mn 2p XAS revealed that Mn ions in $Mn_3Ga$ are nearly divalent for both of the Mn ions having the locally octahedral symmetry and those having the locally tetrahedral symmetry. The measured Mn 2p XMCD spectrum of $Mn_3Ga$ is very similar to that of ferrimagnetic $MnFe_2O_4$ having divalent Mn ions. The sum-rule analysis of the Mn 2p XMCD spectrum shows that both the spin and orbital magnetic moments of Mn ions in $Mn_3Ga$ are negligibly small, in agreement with the nearly compensated-ferrimagnetic ground state of $Mn_3Ga$. The valence-band PES spectrum of $Mn_3Ga$ agrees well with the calculated density of states, supporting the half-metallic electronic structure of $Mn_3Ga$.

Potential Energy Surfaces for Ligand Exchange Reactions of Square Planar Diamagnetic PtY2L2 Complexes:Hydrogen Bond (PtY2L2···L') versus Apical (Y2L2Pt···L') Interaction

  • Park, Jong-Keun;Kim, Bong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1405-1417
    • /
    • 2006
  • The geometrical structures, potential energy surfaces, and energetics for the ligand exchange reactions of tetracoordinated platinum $(PtY_2L_2\;:\;Y,\;L=Cl^-,\;OH^-,\;OH_2,\;NH_3)$ complexes in the ligand-solvent interaction systems were investigated using the ab initio Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The potential energy surfaces for the ligand exchange reactions used for the conversions of $(PtCl_4\;+\;H_2O)^{^\ast_\ast}\;to\;[PtCl_3(H_2O)\;+\;Cl^-]$ and $[Pt(NH_3)_2Cl_2\;+\;H_2O]$$[Pt(NH_3)_2Cl_2\;+\;H_2O]$ to $[Pt(NH_3)_2Cl(H_2O)\;+\;Cl^-] $ were investigated in detail. For these two exchange reactions, the transition states $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime])^{^\ast_\ast} $ correspond to complexes such as $(PtCl_4{\cdot}{\cdot}{\cdot}H_2O)^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$, respectively. In the transition state, $([PtCl_4{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]]^{^\ast_\ast})$ have a kind of 6-membered $(Pt-Cl{\cdot}{\cdot}{\cdot}HOH{\cdot}{\cdot}{\cdot}Cl)$ and $(Pt-OH{\cdot}{\cdot}{\cdot}Cl{\cdot}{\cdot}{\cdot}HN)$ interactions, respectively, wherein a central Pt(II) metal directly combines with a leaving $Cl^-$ and an entering $H_2O$. Simultaneously, the entering $H_2O$ interacts with a leaving $Cl^-$. No vertical one metal-ligand interactions $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime]) $ are found at the axial positions of the square planar $(PtY_2L_2)$ complexes, which were formed via a vertically associative mechanism leading to $D_{3h}$ or $C_{2v}$-transition state symmetry. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes are also examined quantitatively. Schematic diagrams for the dissociation reactions of {PtCl4(H2O)n(n=2,4)} into {$PtCl_3(H_2O)_{(n-2)}\;+\;Cl^-(H_2O)_2$} and the binding energies {$PtCl_4(H_2O)_n$(n = 1-5)} of $PtCl_4$ with water molecules are drawn.

Development of Space Divided PE-ALD System and Process Design for Gap-Fill Process in Advanced Memory Devices (차세대 메모리 디바이스Gap-Fill 공정 위한 공간 분할 PE-ALD개발 및 공정 설계)

  • Lee, Baek-Ju;Hwang, Jae-Soon;Seo, Dong-Won;Choi, Jae-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.124-129
    • /
    • 2020
  • This study is for the development of high temperature ALD SiO2 film process, optimized for gap-fill process in manufacturing memory products, using a space-divided PE-ALD system equipped with an independent control dual plasma system and orbital moving unit. Space divided PE-ALD System has high productivity, and various applications can be applied according to Top Lid Design. But space divided ALD system has a limitation to realize concentric deposition map due to process influence due to disk rotation. In order to solve this problem, we developed an orbit rotation moving unit in which disk and wafer. Also we used Independent dual plasma system to enhance thin film properties. Improve productivity and film density for gap-fill process by having deposition and surface treatment in one cycle. Optimize deposition process for gap-fill patterns with different depths by utilizing our independently controlled dual plasma system to insert N2and/or He plasma during surface treatment, Provide void-free gap-fill process for high aspect ratio gap-fill patterns (up to 50:1) with convex curvature by adjusting deposition and surface treatment recipe in a cycle.

Formation and evolution of sub-galactic structures around dwarf galaxy-sized halos

  • Chun, Kyungwon;Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.39.4-40
    • /
    • 2016
  • We aim to investigate formation of satellite sub-galactic structures around isolated dwarf galaxies using cosmological hydrodynamic zoom simulations. For this, we modify a cosmological hydrodynamic code, GADGET-3, in a way that includes gas cooling down to T~10K, gas heating by universal reionization when z < 8.9, UV shielding for high density regions of $n_{shield}$ > $0.014cm^{-3}$, star formation in the dense regions ($n_H$ > $100cm^{-3}$), and supernova feedback. To get good statistics, we perform three different simulations for different target galaxies of the same mass of ${\sim}10^{10}M_{sun}$. Each simulation starts in a cubic box of a side length of 1Mpc/h with 17 million particles from z = 49. The mass of dark matter (DM) and gas particle is $M_{DM}=4.1{\times}10^3M_{sun}$ and $M_{gas}=7.9{\times}10^2M_{sun}$, respectively, thus each satellite sub-galactic structure can be resolved with more than hundreds or thousands particles. We analyze total 90 sub-galactic structures that have formed outside of the main halos but infall the main halos. We found that 1) mini halos that interact more with the other mini halos tend to accrete the more mass, 2) mini halos that interact more before the reionization tend to form more stars, 3) mini halos with the more interaction tend to approach closer to the galactic center and have the lower orbital circularity, 4) survivals even in the strong tidal fields evolve baryon dominated system, such as globular clusters.

  • PDF

Energy Band Structure and Photocatalytic Property of Fe-doped Zn2TiO4 Material

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Lim, Kwon-Taek;Jung, Ok-Sang;Jeong, Euh-Duck;Bae, Jong-Seong;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3021-3024
    • /
    • 2009
  • $Zn_2Ti_{1-x}Fe_xO_4\;(0\;{\leq}\;x\;{\leq}\;0.7)$ photocatalysts were synthesized by polymerized complex (PC) method and investigated for its physico-chemical as well as optical properties. $Zn_2Ti_{1-x}Fe_xO_4$ can absorb not only UV light but also visible light region due to doping of Fe in the Ti site of $Zn_2TiO_4$ lattice because of the band transition from Fe 3d to the Fe 3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $Zn_2TiO_4$ samples for hydrogen production under UV light irradiation decreased with an increase in Fe concentration in $Zn_2TiO_4$. Consequently, there exists an optimized concentration of iron for improved photocatalytic activity under visible light (${\lambda}{\leq}$420 nm)

Improving Orbit Determination Precision of Satellite Optical Observation Data Using Deep Learning (심층 학습을 이용한 인공위성 광학 관측 데이터의 궤도결정 정밀도 향상)

  • Hyeon-man Yun;Chan-Ho Kim;In-Soo Choi;Soung-Sub Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.262-271
    • /
    • 2024
  • In this paper, by applying deep learning, one of the A.I. techniques, through angle information, which is optical observation data generated when observing satellites at observatories, distance information from observatories is learned to predict range data, thereby increasing the precision of satellite's orbit determination. To this end, we generated observational data from GMAT, reduced the learning data error of deep learning through preprocessing of the generated observational data, and conducted deep learning through MATLAB. Based on the predicted distance information from learning, trajectory determination was performed using an extended Kalman filter, one of the filtering techniques for trajectory determination, through GMAT. The reliability of the model was verified by comparing and analyzing the orbital determination with angular information without distance information and the orbital determination result with predicted distance information from the model.

Electronic Structure and Magnetic Moments of Copper-atom in/on GaN Semiconductor

  • Kang, Byung-Sub;Lee, Haeng-Ki
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.51-55
    • /
    • 2010
  • The electronic and magnetic properties of Cu-doped GaN with a Cu concentration of 6.25% and 12.5% are examined theoretically using the full-potential linear muffin-tin orbital method. The magnetic moment of Cu atoms decreases with increasing Cu concentration. The spin-polarization of Cu atoms is reduced due to the Cu d-d interaction depending on the distance between the nearest neighbouring Cu atoms. Cu atoms exhibits a clustering tendency in GaN. For Cu-adsorbed GaN thin films with a surface coverage of 0.25, the ferromagnetic state is found to be the energetically favourable state with an induced magnetic moment of $0.54\;{\mu}_B$ per supercell.

Dichotomy of the Galactic Halo as Revealed by Carbon-Enhanced Metal-Poor Giants

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.66.3-67
    • /
    • 2018
  • We present distinct chemical and kinematic properties associated with the inner and outer halos of the Milky Way, as identified by metal-poor stars from the Sloan Digital Sky Survey. In particular, using carbon-enhance metal-poor (CEMP) giants, we first map out the fractions of CEMP-no stars (without strongly enhanced neutron-capture elements) and CEMP-s stars (with a large enhancement of s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). The CEMP-no and CEMP-s objects are classified by their different levels of absolute carbon abundances, A(C). We investigate characteristics of rotational velocity and orbital eccentricity for these sub-classes within the halo populations. Distinct kinematic features and fractions between CEMP-no and CEMP-s stars identified in each halo region will provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF