• Title/Summary/Keyword: Sub-Band Allocation

Search Result 30, Processing Time 0.023 seconds

RADIO ASTRONOMY AT WRC-03

  • Chung, Hyun-Soo;Ahn, Do-Seob;Park, Jong-Min;Oh, Dae-Sub;Kim, Hyo-Ryoung;Rho, Duk-Gyoo;Je, Do-Heung
    • Publications of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.111-133
    • /
    • 2003
  • Most radio astronomy issues at WRC-03 (World Radiocommunication Conference-03) revolved around satellite downlink allocations, particularly to NGSO (Non-Geostationary Satellite Orbit) satellite systems, in bands adjacent to or close to a radio astronomy frequency band. Out of a total of 50 agenda items, ten were of interest to radio astronomers. This paper provides some details about the important outcome of the radio astronomy related issues at the WRC-03.

Packet Scheduling in Interactive Satellite Return Channels for Mobile Multimedia Services Using Hybrid CDMA/TDMA

  • Lee Ki-Dong;Kim Ho-Kyom;Lee Ho-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.744-748
    • /
    • 2003
  • Developing an interactive satellite multi­media system, such as a digital video broadcasting (DVB) return channel via satellite (RCS) system, is gaining popularity over the world To accommodate the increasing traffic demand we are motivated to investigate an alternative for improving return channel utilization We develop an efficient method for optimal packet scheduling in an interactive satellite multimedia system using hybrid CDMA/TDMA channels. We formulate the timeslot-code assignment problem as a binary integer programming (BIP) problem, where the throughput maximization is the objective, and decompose this BIP problem into two sub-problems for the purpose of solution efficiency. With this decomposition, we promote the computational efficiency in finding the optimal solution of the original BIP problem Since 2001, ETRI has been involved in a development project where we have successfully completed an initial system integration test on broadband mobile Internet access via Ku-band channels using the proposed resource allocation algorithm.

  • PDF

Information Compression Based on Wavelet Transform (웨이블릿변환에 기반한 정보압축)

  • Kim, Eung-Kyeu;Lee, Soo-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.333-334
    • /
    • 2006
  • In this study, information compression based on the wavelet technique is described. The principle of signal or image compression is performed by optimization of quantization, that is the bit allocation taking advantage of their energy concentration in low frequency components. The wavelet transform is one of frequency decomposition, such as the discrete cosine transform or sub-band filtering, and it is also implemented as a filter bank. Wavelet transform with use of spatially localized basis function can reduce several drawbacks in conventional methods. The benifit of wavelet based compression method is described as comparing the transform method to another ones.

  • PDF

Report on the Present Condition and Operating of High Frequency Ocean Surface Radars in Korea (해수면 관측레이더의 국내 현황 및 운용에 관한 보고)

  • Song, Kyu-Min;Cho, Chol-Ho;Jung, Kyung-Tae;Lie, Heung-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.437-445
    • /
    • 2010
  • There is increasing interest, on the global basis, in the operation of ocean surface radars for measurement of coastal sea surface conditions to support environmental, oceanographic, meteorological, climatological, maritime and disaster mitigation operations. In south Korea, ocean surface radars are operating to monitoring oil spill, outflow from dike or preventing from safety-accidents in the 6 regions (16 radial sites) by main frequency about 13, 25 and 42 MHz until the present. However, that ocean surface radars have been operated on an experimental spectrum basis. In the results of 3~50 MHz band domestic analysis to improve the regulatory status of the spectrum used by oceanographic radars, it was demonstrated that sufficient frequency bands are available for oceanographic radars on the frequency band above 20 MHz. It is difficult to deploy and operate oceanographic radars in the sub-bands below 20 MHz except for 13 MHz band. For using HF ocean surface radars one should understand the spectrum environment in Korea and should prepare a suitable operating system and data processing techniques.

Spectrum Reuse Schemes with Power Control for Device-to-Device Communication in LTE-Advanced Cellular Network

  • Chhorn, Sok;Yoon, Seok-Ho;Seo, Si-O;Kim, Seung-Yeon;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4819-4834
    • /
    • 2015
  • The spectral efficiency of cellular networks can be improved when proximate users engage in device-to-device (D2D) communications to communicate directly without going through a base station. However, D2D communications that are not properly designed may generate interference with existing cellular networks. In this paper, we study resource allocation and power control to minimize the probability of an outage and maximize the overall network throughput. We investigate three power control-based schemes: the Partial Co-channel based Overlap Resource Power Control (PC.OVER), Fractional Frequency Reuse based Overlap Resource Power Control (FFR.OVER) and Fractional Frequency Reuse based Adaptive Power Control (FFR.APC) and also compare their performance. In PC.OVER, a certain portion of the total bandwidth is dedicated to the D2D. The FFR.OVER and FFR.APC schemes combine the FFR techniques and the power control mechanism. In FFR, the entire frequency band is partitioned into two parts, including a central and edge sub-bands. Macrocell users (mUEs) transmit using uniform power in the inner and outer regions of the cell, and in all three schemes, the D2D receivers (D2DRs) transmit with low power when more than one D2DRs share a resource block (RB) with the macrocells. For PC.OVER and FFR.OVER, the power of the D2DRs is reduced to its minimum, and for the FFR.APC scheme, the transmission power of the D2DRs is iteratively adjusted to satisfy the signal to interference ratio (SIR) threshold. The three schemes exhibit a significant improvement in the overall system capacity as well as in the probability of a user outage when compared to a conventional scheme.

Optimization for Relay-Assisted Broadband Power Line Communication Systems with QoS Requirements Under Time-varying Channel Conditions

  • Wu, Xiaolin;Zhu, Bin;Wang, Yang;Rong, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4865-4886
    • /
    • 2017
  • The user experience of practical indoor power line communication (PLC) applications is greatly affected by the system quality-of-service (QoS) criteria. With a general broadcast-and-multi-access (BMA) relay scheme, in this work we investigate the joint source and relay power optimization of the amplify-and-forward (AF) relay systems used under indoor broad-band PLC environments. To achieve both time diversity and spatial diversity from the relay-involved PLC channel, which is time-varying in nature, the source node has been configured to transmit an identical message twice in the first and second signalling phase, respectively. The QoS constrained power allocation problem is not convex, which makes the global optimal solution is computationally intractable. To solve this problem, an alternating optimization (AO) method has been adopted and decomposes this problem into three convex/quasi-convex sub-problems. Simulation results show the fast convergence and short delay of the proposed algorithm under realistic relay-involved PLC channels. Compared with the two-hop and broadcast-and-forward (BF) relay systems, the proposed general relay system meets the same QoS requirement with less network power assumption.

Impact of 5G New Radio Downlink Signal on Fixed-Satellite Service Earth Station

  • Park, Yeon-Gyu;Lee, Il-Kyoo
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.155-161
    • /
    • 2020
  • The fifth generation (5G) is a state-of-the-art mobile communication access technology that uses sub 6 GHz bands and mmWave. Presently, the 5G network is partially deployed along with 4G in areas with dense traffic. In the future, the demand for the 5G bandwidth may increase. Thus, it is necessary to study the coexistence between the 5G and radio systems using adjacent or same channels to eliminate the interference between radio systems and efficiently utilize the frequency. This paper analyzed the impact of 5G new radio downlink on the fixed-satellite service earth station operating at the co-channel and adjacent channel in the upper 3.7 GHz band using the Spectrum Engineering Advanced Monte Carlo Analysis Tool, which is based on the Monte Carlo method. The results of this paper can be utilized for planning the frequency allocation of 5G networks; they can also be used as a guideline for deploying 5G base stations around a fixed-satellite service earth station.

THE PROTECT10N OF PASSIVE SERVICES FROM UNWANTED EMISSIONS, IN PARTICULAR FROM SPACE SERVICE TRANSMISSION (불요발사 (우주업무의 발사)로부터 수동업무의 보호)

  • Chung, Hyun-Soo;;Je, Do-Heung;Park, Jong-Min;Kim, Hyo-Ryoung;Ahn, Do-Seob;Oh, Dae-Sub
    • Publications of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.97-110
    • /
    • 2003
  • WRC-03 was held between 9 June and 4 July 2003 in Geneva, Switzerland. Over 2,200 delegates from 138 ITU Member States attended the Conference. The delegates considered some 2,500 proposals, and over 900 numbered documents related to 50 agenda items. The final output of the Conference consists of 527 pages of new and revised text of the Radio Regulations. This paper provides some details about the outcome of the radio astronomy related issues at the WRC-03 Conference. It is divided into two part: a) Agenda item1.8.2 and b) Agenda item 1.32, related to radio astronomy. Relevant extracts from the Final Acts of WRC-03 are given in the Appendix. Agenda item 1.8.2 was one of the most controversial Agenda Items at WRC-03. Studies were carried out within ITU-R TG 1/7 for the last three years; the results of these studies are summarized in Recommendation ITU-R SM.1633. The Conference adopted a new footnote (5.347A), that calls for the application of Resolution 739 (WRC-03) in the 1452-1492 MHz, 1525-1559 MHz, 1613.8-1626.5 MHz, 2655-2670 MHz, 2670-2690 MHz and 21.4-22.0 GHz bands. Agenda item 1.32 is to consider technical and reglatory provisions concerning the band 37.5-43.5 GHz, in accordance with Resolutions 128 (Rev.WRC-2000) and 84 (WRC-2000). WRC-03 reviewed and adjusted the New footnotes 5.551H and 5.551I cover the protection of radio astronomy observations in the 42.5-43.5 GHz band from unwanted emissions by non-geostationary (5.551H) and geostationary (5.551I) FSS and BSS systems, respectively.

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.

Power and Rate Adaptations in Multi-carrier DS/CDMA Communications over Rayleigh Fading Channel (레일레이 패이딩 채널에서 다중 반송자 DS/CDMA 통신 시스템의 전력-전송율 적응 방식)

  • Ah Heejune;Lee Ye Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.423-433
    • /
    • 2005
  • We present power(in frequency domain) and rate adaptation(in time domain) schemes in multicarrier (MC) direct-sequence code-division multiple-access(DS/CDMA) communications. Utilizing channel state information from the receiver, the adaptation schemes allocate power the user's sub-band with the largest channel gain. In the time domain, the transmission data rate is adapted for a desired transmission quality. In the case of single-user channels, a closed-form expression is derived for an optimal time domain power adaptation that minimizes the average bit error rate(BER). Channel inversion power adaptation is found to provide nearly optimal performance in this case, as the number of sub-bands or available average transmission power increase. Analysis and simulation results show the BER performance of the proposed power and rate adaptations with fixed average transmission power significantly improves the performance over the power allocation in the frequency domain only. Also, we compare the performance of the proposed power and rate adaptation schemes in MC-DS/CDMA systems with that of power and rate adapted single carrier DS/CDMA systems with RAKE receiver.