• Title/Summary/Keyword: Sub--Channels

Search Result 327, Processing Time 0.032 seconds

A Simple Bit Allocation Scheme Based on Grouped Sub-Channels for V-BLAST OFDM Systems (V-BLAST OFDM 시스템을 위한 그룹화된 부채널 기반의 간단한 형태의 비트 할당 기법)

  • Park Dae-Jin;Yang Suck-Chel;Kim Jong-Won;Yoo Myung-Sik;Lee Won-Cheol;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.680-690
    • /
    • 2006
  • In this paper, we present a bit allocation scheme based on grouped sub-channels for MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) systems using V-BLAST (Vertical-Bell laboratories LAyered Space-Time) detector. A fully adaptive modulation and coding scheme may provide optimal performance in the MIMO-OFDM systems, however it requires excessive feedback information. Instead, SBA (Simplified Bit Allocation) scheme for reduction of feedback overhead, which applies the same modulation and coding to all the good sub-channels, may be considered. The proposed scheme in this paper named SBA-GS (Simplified Bit Allocation based on Grouped Sub-channels) groups sub-channels and assigns the same modulation and coding to the set of selected sub-channel groups. Simulation results show that the proposed scheme achieves comparable bit error rate performance of the conventional SBA scheme, while significantly reducing the feedback overhead in multipath channels with small delay spreads.

Sub-Ciliary Segregation of Two Drosophila Transient Receptor Potential Channels Begins at the Initial Stage of Their Pre-Ciliary Trafficking

  • Kwon, Youngtae;Lee, Jeongmi;Chung, Yun Doo
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1002-1010
    • /
    • 2020
  • Cilia are important eukaryotic cellular compartments required for diverse biological functions. Recent studies have revealed that protein targeting into the proper ciliary subcompartments is essential for ciliary function. In Drosophila chordotonal cilium, where mechano-electric transduction occurs, two transient receptor potential (TRP) superfamily ion channels, TRPV and TRPN, are restricted to the proximal and distal subcompartments, respectively. To understand the mechanisms underlying the sub-ciliary segregation of the two TRPs, we analyzed their localization under various conditions. In developing chordotonal cilia, TRPN was directly targeted to the ciliary tip from the beginning of its appearance and was retained in the distal subcompartment throughout development, whereas the ciliary localization of TRPV was considerably delayed. Lack of intraflagella transport-related proteins affected TRPV from the initial stage of its pre-ciliary trafficking, whereas it affected TRPN from the ciliary entry stage. The ectopic expression of the two TRP channels in both ciliated and non-ciliated cells revealed their intrinsic properties related to their localization. Taken together, our results suggest that sub-ciliary segregation of the two TRP channels relies on their distinct intrinsic properties, and begins at the initial stage of their pre-ciliary trafficking.

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.

The Effects of Ginsenoside Rg3 as a Potent Inhibitor of Ca2+ Channels and NMDA-gated Channels in the Peripheral and Central Nervous Systems (말초 및 중추신경계에서 칼슘채널 및 NMDA 매개 채널의 억제제로의 진세노사이드 Rg3의 효과)

  • Rhim, Hye-Whon
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.120-128
    • /
    • 2003
  • Alternative medicines such as herbal products are increasingly being used for preventive and therapeutic purposes. Ginseng is the best known and most popular herbal medicine used worldwide. In spite of some beneficial effects of ginseng on the nervous system, little scientific evidence shows at the cellular level. In the present study, I have examined the direct modulation of ginseng total saponins and individual ginsenosides on the activation of $Ca^{2+}$ channels and NMDA-gated channels in cultured rat dorsal root ganglion (DRG) and hippocampal neurons, respectively. In DRG neurons, application of ginseng total saponins suppressed high-voltage-activated $Ca^{2+}$ channel currents and ginsenoside Rg$_3$, among the 11 ginsenosides tested, produced the strongest inhibition on $Ca^{2+}$ channel currents. Occlusion experiments using selective $Ca^{2+}$ channel blockers revealed that ginsenoside Rg$_3$ could modulate L-, N-, and P/Q-type currents. In addition, ginsenoside Rg$_3$ also proved to be an active component of ginseng actions on NMDA receptors in cultured hippocampal neurons. Application of ginsenoside Rg$_3$ suppressed NMDA-induced [Ca$^{2+}$]$_{i}$ increase and -gated channels using fura-2-based digital imaging and patch-clamp techniques, respectively. These results suggest that the modulation of $Ca^{2+}$ channels and NMDA receptors by ginsenoside Rg$_3$ could be part of the pharmacological basis of ginseng actions in the peripheral and central nervous systems.ous systems.

Fractional Frequency Reuse with Sub-channel Borrowing (부분적 주파수 재사용의 성능 향상을 위한 sub-channel 차용 기법)

  • An, Jong-Wook;Cho, Seung-Moo;Lee, Tae-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.259-260
    • /
    • 2008
  • This paper presents fractional frequency reuse (FFR) with sub-channel borrowing to improve spectral efficiency of the wireless broadband (WiBro) system. FFR has constraints on usable sub-channels to balance the interference and cell capacity. Our FFR with sub-channel borrowing allows use of the dedicated sub-channels assigned to neighboring cells. Simulation results show that the proposed FFR with sub-channel borrowing improves the performance of the WiBro system.

  • PDF

DESIGN OF PARALLEL COOLING CHANNELS IN A PLASTIC INJECTION MOLD (사출 금형의 병렬 냉각 채널 설계 방법)

  • Kim, H.S.;Jung, H.K.;Han, B.Y.;Kim, Y.M.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.93-98
    • /
    • 2012
  • The injection molding process is suitable for manufacturing complicated plastic products. As the customer request higher quality products increase, realization of the precise dimensional and shape controls is getting more important. For this purpose it is important to obtain uniform cooling procedure over the whole surface of the high temperature molded plastic. Failure to this may lead to different shrinkage speed, internal stresses and unwanted shape deformations. It is necessary to distribute coolant flow rates to the main channel and to the sub-channels properly to insure uniform cooling process when there are parallel cooling channels. In this study, three-dimensional turbulent flow simulations for representative parallel cooling channels were performed. To insure the intended flow rate to each sub-channels, various shape designs for the channel system were investigated. The results show that as the Reynolds number increases the effect of shape design is more profound. Through the proper flow distribution, uniform cooling effects would be expected.

Effects of rosiglitazone, an antidiabetic drug, on Kv3.1 channels

  • Hyang Mi Lee;Seong Han Yoon;Min-Gul Kim;Sang June Hahn;Bok Hee Choi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.95-103
    • /
    • 2023
  • Rosiglitazone is a thiazolidinedione-class antidiabetic drug that reduces blood glucose and glycated hemoglobin levels. We here investigated the interaction of rosiglitazone with Kv3.1 expressed in Chinese hamster ovary cells using the wholecell patch-clamp technique. Rosiglitazone rapidly and reversibly inhibited Kv3.1 currents in a concentration-dependent manner (IC50 = 29.8 µM) and accelerated the decay of Kv3.1 currents without modifying the activation kinetics. The rosiglitazonemediated inhibition of Kv3.1 channels increased steeply in a sigmoidal pattern over the voltage range of -20 to +30 mV, whereas it was voltage-independent in the voltage range above +30 mV, where the channels were fully activated. The deactivation of Kv3.1 current, measured along with tail currents, was also slowed by the drug. In addition, the steady-state inactivation curve of Kv3.1 by rosiglitazone shifts to a negative potential without significant change in the slope value. All the results with the use dependence of the rosiglitazone-mediated blockade suggest that rosiglitazone acts on Kv3.1 channels as an open channel blocker.

Sub-channel Allocation Based on Multi-level Priority in OFDMA Systems

  • Lee, JongChan;Lee, MoonHo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1876-1889
    • /
    • 2013
  • Packet-based mobile multimedia services for the Internet differ with respect to their resource requirements, performance objectives, and resource usage efficiencies. Nonetheless, each mobile terminal should support a variety of multimedia services, sometimes even simultaneously. This paper proposes a sub-channel allocation scheme based on multi-level priority for supporting mobile multimedia services in an Orthogonal Frequency Division Multiple Access (OFDMA) system. We attempt to optimize the system for satisfying the Quality of Service (QoS) requirements of users and maximize the capacity of the system at the same time. In order to achieve this goal, the proposed scheme considers the Signal-to-Interference-plus-Noise Ratio (SINR) of co-sub-channels in adjacent cells, the Signal-to-Noise Ratio (SNR) grade of each sub-channel in the local cell on a per-user basis, and the characteristics of the individual services before allocating sub-channels. We used a simulation to evaluate our scheme with the performance measure of the outage probabilities, delays, and throughput.

Encainide, a class Ic anti-arrhythmic agent, blocks voltage-dependent potassium channels in coronary artery smooth muscle cells

  • Hongliang Li;Yue Zhou;Yongqi Yang;Yiwen Zha;Bingqian Ye;Seo-Yeong Mun;Wenwen Zhuang;Jingyan Liang;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.399-406
    • /
    • 2023
  • Voltage-dependent K+ (Kv) channels are widely expressed on vascular smooth muscle cells and regulate vascular tone. Here, we explored the inhibitory effect of encainide, a class Ic anti-arrhythmic agent, on Kv channels of vascular smooth muscle from rabbit coronary arteries. Encainide inhibited Kv channels in a concentration-dependent manner with an IC50 value of 8.91 ± 1.75 μM and Hill coefficient of 0.72 ± 0.06. The application of encainide shifted the activation curve toward a more positive potential without modifying the inactivation curve, suggesting that encainide inhibited Kv channels by altering the gating property of channel activation. The inhibition by encainide was not significantly affected by train pulses (1 and 2 Hz), indicating that the inhibition is not use (state)-dependent. The inhibitory effect of encainide was reduced by pretreatment with the Kv1.5 subtype inhibitor. However, pretreatment with the Kv2.1 subtype inhibitor did not alter the inhibitory effects of encainide on Kv currents. Based on these results, encainide inhibits vascular Kv channels in a concentration-dependent and use (state)-independent manner by altering the voltage sensor of the channels. Furthermore, Kv1.5 is the main Kv subtype involved in the effect of encainide.