• Title/Summary/Keyword: Sub pixel algorithm

Search Result 108, Processing Time 0.025 seconds

An RGB to RGBY Color Conversion Algorithm for Liquid Crystal Display Using RGW Pixel with Two-Field Sequential Driving Method

  • Hong, Sung-Jin;Kwon, Oh-Kyong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.777-782
    • /
    • 2014
  • This paper proposes an RGB to RGBY color conversion algorithm for liquid crystal display (LCD) using RGW pixel structure with two-field (yellow and blue) sequential driving method. The proposed algorithm preserves the hue and saturation of the original color by maintaining the RGB ratio, and it increases the luminance. The performance of the proposed RGBY conversion algorithm is verified using the MATLAB simulation with 24 images of Kodak lossless true color image suite. The simulation results of average color difference CIEDE2000 (${\delta}E^*_{00}$) and scaling factor are 0.99 and 1.89, respectively. These results indicate that the average brightness is increased 1.89 times compared to LCD using conventional RGB pixel structure, without increasing the power consumption and degrading the image quality.

Sub-pixel Multiplexing for Autostereoscopic Full Parallax 3D (무안경 완전시차 입체 재현을 위한 서브픽셀 다중화)

  • Eum, Homin;Lee, Gwangsoon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.2009-2015
    • /
    • 2017
  • A two-dimensional lens is required to reproduce both the horizontal and vertical parallax through an autostereoscopic 3D display. Among the two-dimensional lenses, a hexagonal micro lens array (MLA) having good optical efficiency is mainly used. However, the hexagonal MLA has complex geometric features. The first feature is that the lens cells are zigzagged in the vertical direction, which should be reflected in the view number calculation for each sub-pixel. The second feature is that the four sides of a hexagonal lens cell are tilted, requiring a more careful view index assignment to the lens cell. In this paper, we propose a sub-pixel multiplexing scheme suitable for the features of the hexagonal MLA. We also propose a view-overlay algorithm based on a two-dimensional lens and compare subjective image quality with existing view-selection through autostereoscopic 3D display implementation.

Sub-Pixel Motion Estimation by Using Only integ-Pixel (정수-화소만을 이용한 1/4-화소 단위 고속 움직임 추정)

  • Cho, Hyo-Moon;Park, Dong-Kyun;Cho, Snag-Bock
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.383-384
    • /
    • 2007
  • In this paper, we propose the new and simple method for sub-pixel block search algorithm by only using integer-pixel for motion estimation and compensation. In many papers, the fast search block match algorithms based on TSS have been proposed. However, these methods could be achieved a little reduction of the computational complexity. All of searching points by 1/4-pixel have own predicted integer-pixel SAD array. Therefor, if we know initial nine SAD values by integer, which is on the searching area of the reference frame, then we can find optimal searching point by 1/4-pixel, directly.

  • PDF

Sub-Pixel Rendering Algorithm Using Adaptive 2D FIR Filters (적응적 2차원 FIR 필터를 이용한 부화소 렌더링 기법)

  • Nam, Yeon Oh;Choi, Ik Hyun;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • In this paper, we propose a sub-pixel rendering algorithm using learning-based 2D FIR filters. The proposed algorithm consists of two stages: the learning and synthesis stages. At the learning stage, we produce the low-resolution synthesis information derived from a sufficient number of high/low resolution block pairs, and store the synthesis information into a so-called dictionary. At the synthesis stage, the best candidate block corresponding to each input high-resolution block is found in the dictionary. Next, we can finally obtain the low-resolution image by synthesizing the low-resolution block using the selected 2D FIR filter on a sub-pixel basis. On the other hand, we additionally enhance the sharpness of the output image by using pre-emphasis considering RGB stripe pattern of display. The simulation results show that the proposed algorithm can provide significantly sharper results than conventional down-sampling methods, without blur effects and aliasing.

A Fast Sub-pixel Motion Estimation Method for H.264 Video Compression (H.264 동영상 압축을 위한 부 화소 단위에서의 고속 움직임 추정 방법)

  • Lee, Yun-Hwa;Choi, Myung-Hoon;Shin, Hyun-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.411-417
    • /
    • 2006
  • Motion Estimation (ME) is an important part of video coding process and it takes the largest amount of computation in video compression. Half-pixel and quarter-pixel motion estimation can improve the video compression rate at the cost of higher computational complexity In this paper, we suggest a new efficient low-complexity algorithm for half-pixel and quarter pixel motion estimation. It is based on the experimental results that the sum of absolute differences(SAD) shows parabolic shape and thus can be approximated by using interpolation techniques. The sub-pixel motion vector is searched from the minimum SAD integer-pixel motion vector. The sub-pixel search direction is determined toward the neighboring pixel with the lowest SAD among 8 neighbors. Experimental results show that more than 20% reduction in computation time can be achieved without affecting the quality of video.

A novel LED display architecture using 4 color sub-pixel rendering (4 컬러 서브픽셀 렌더링 적용 고해상도 LED Display)

  • kim, Dae-Sik;Shigeta, Tetsuya;Im, Sang-Kyun;Lee, Ho-Sup
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.182-184
    • /
    • 2015
  • We have developed a novel LED display architecture with RGGB 4sub-pixels rendering. LED light control filter algorithm is proposed in order to reduce color fringes by sub-pixel rendering which is a method of perceptual enhancement. The results show that it has 2 times higher perceptual resolution without artifacts.

  • PDF

High-Resolution Image Reconstruction Considering the Inaccurate Sub-Pixel Motion Information (부정확한 부화소 단위의 움직임 정보를 고려한 고해상도 영상 재구성 연구)

  • Park, Jin-Yeol;Lee, Eun-Sil;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.169-178
    • /
    • 2001
  • The demand for high-resolution images is gradually increasing, whereas many imaging systems have been designed to allow a certain level of aliasing during image acquisition. Thus, digital image processing approaches have recently been investigated to reconstruct a high-resolution image from aliased low-resolution images. However, since the sub-pixel motion information is assumed to be accurate in most conventional approaches, the satisfactory high-resolution image cannot be obtained when the sub-pixel motion information is inaccurate. Therefore, in this paper we propose a new algorithm to reduce the distortion in the reconstructed high-resolution image due to the inaccuracy of sub-pixel motion information. For this purpose, we analyze the effect of inaccurate sub-pixel motion information on a high-resolution image reconstruction, and model it as zero-mean additive Gaussian errors added respectively to each low-resolution image. To reduce the distortion we apply the modified multi-channel image deconvolution approach to the problem. The validity of the proposed algorithm is both theoretically and experimentally demonstrated in this paper.

  • PDF

Sub-pixel Motion Compensated Deinterlacing Algorithm (부화소 단위의 움직임 정보를 고려한 순차 주사화)

  • 박민규;최종성;강문기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.322-331
    • /
    • 2003
  • Advances of high-definition television(HDTV) and personal computers call for the mutual conversion between interlaced signal and progressive signal. Especially, deinterlacing which is known as an interlaced to progressive conversion has been recently required and investigated. In this paper, we propose new deinterlacing algorithm considering sub-pixel motion information. In order to reduce the error of motion estimation, we analyze the effect of inaccurate sub-pixel motion information and model it as zero-mean Gaussian noises added respectively to each low resolution image(field). The error caused by inaccurate motion information is reduced by determining regularization parameter according to the error of motion estimation in each channel. The validity of the proposed algorithm is demonstrated both theoretically and experimentally in this paper.

A Study on Linear Spectral Mixing Model for Hyperspectral Imagery with Geometric Method (기하학적 기법을 이용한 하이퍼스펙트럴 영상의 Linear Spectral Mixing모델에 관한 연구)

  • 장은석;김대성;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.11a
    • /
    • pp.23-29
    • /
    • 2003
  • Detection in remotely sensed images can be conducted spatially, spectrally or both [2]. If the images have high spatial resolution, materials can be detected by using spatial and spectral information, unless we can't see the object embedded in a pixel. In this paper, we intend to solve the limit of spatial resolution by using the hyperspectral image which has high spectral resolution. Therefore, the Linear Spectral Mixing(LSM) Model which is sub-pixel detection algorithm is used to solve this problem. To find class Endmembers, we applied Geometric Model with MNF(Minimum Noise Fraction) transformation. From the result of sub-pixel detection algorithm, we can see the detection of water is satisfied and the object shape cannot be extracted but the possibility of material existence can be identified.

  • PDF

Fast Sub-pixel Search Control by using Neighbor Motion Vector in H.264 (H.264에서 주변 움직임 벡터를 이용한 고속 부 화소 탐색 제어 기법)

  • La, Byeong-Du;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.16-22
    • /
    • 2007
  • Motion Estimation time in the H.264 has a large portion of encoding time and must be improved for real time application. Most of proposed motion estimation algorithm including Sub-pixel search use the fast search algorithm to speed up motion estimation by targeting the performance of full search in the reference code. This paper proposes a novel fast sub-pixel search control algorithm for H.264 encoder by using neighbor motion vector after analyzing the encoded Motion vector of video sequence. In addition the horizontal/vertical searching method is proposed with the horizontal/vertical directionality of motion vector. And the evaluation is performed with the proposed algorithms and other reference algorithms.