• Title/Summary/Keyword: Sub Oriented Histogram

Search Result 3, Processing Time 0.018 seconds

Sub Oriented Histograms of Local Binary Patterns for Smoke Detection and Texture Classification

  • Yuan, Feiniu;Shi, Jinting;Xia, Xue;Yang, Yong;Fang, Yuming;Wang, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1807-1823
    • /
    • 2016
  • Local Binary Pattern (LBP) and its variants have powerful discriminative capabilities but most of them just consider each LBP code independently. In this paper, we propose sub oriented histograms of LBP for smoke detection and image classification. We first extract LBP codes from an image, compute the gradient of LBP codes, and then calculate sub oriented histograms to capture spatial relations of LBP codes. Since an LBP code is just a label without any numerical meaning, we use Hamming distance to estimate the gradient of LBP codes instead of Euclidean distance. We propose to use two coordinates systems to compute two orientations, which are quantized into discrete bins. For each pair of the two discrete orientations, we generate a sub LBP code map from the original LBP code map, and compute sub oriented histograms for all sub LBP code maps. Finally, all the sub oriented histograms are concatenated together to form a robust feature vector, which is input into SVM for training and classifying. Experiments show that our approach not only has better performance than existing methods in smoke detection, but also has good performance in texture classification.

Middle Ear Disease Automatic Decision Scheme using HoG Descriptor (HoG 기술자를 이용한 중이염 자동 판별 방법)

  • Jung, Na-ra;Song, Jae-wook;Choi, Ho-Hyoung;Kang, Hyun-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.621-629
    • /
    • 2016
  • This paper presents a decision method of middle ear disease which is developed in children and adults. In the proposed method, features are extracted from the middle ear disease images and normal images using HoG (histogram of oriented gradient) descriptor and the extracted features are learned by SVM (support vector machine) classifier. To obtain an input vector into SVM, an input image is resized to a predefined size and then the resized image is partitioned into 16 blocks each of which is partitioned into 4 sub-blocks (namely cell). Finally, the feature vector with 576 components is given by using HoG with 9 bins and it is used as SVM learning and classification. Input images are classified by SVM classifier based on the model of learning features. Experimental results show that the proposed method yields the precision of over 90% in decision.

A Noisy-Robust Approach for Facial Expression Recognition

  • Tong, Ying;Shen, Yuehong;Gao, Bin;Sun, Fenggang;Chen, Rui;Xu, Yefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2124-2148
    • /
    • 2017
  • Accurate facial expression recognition (FER) requires reliable signal filtering and the effective feature extraction. Considering these requirements, this paper presents a novel approach for FER which is robust to noise. The main contributions of this work are: First, to preserve texture details in facial expression images and remove image noise, we improved the anisotropic diffusion filter by adjusting the diffusion coefficient according to two factors, namely, the gray value difference between the object and the background and the gradient magnitude of object. The improved filter can effectively distinguish facial muscle deformation and facial noise in face images. Second, to further improve robustness, we propose a new feature descriptor based on a combination of the Histogram of Oriented Gradients with the Canny operator (Canny-HOG) which can represent the precise deformation of eyes, eyebrows and lips for FER. Third, Canny-HOG's block and cell sizes are adjusted to reduce feature dimensionality and make the classifier less prone to overfitting. Our method was tested on images from the JAFFE and CK databases. Experimental results in L-O-Sam-O and L-O-Sub-O modes demonstrated the effectiveness of the proposed method. Meanwhile, the recognition rate of this method is not significantly affected in the presence of Gaussian noise and salt-and-pepper noise conditions.