• Title/Summary/Keyword: Study Room

Search Result 8,203, Processing Time 0.038 seconds

Sintering behavior and electrical properties of transition metal (Ni, Co, Mn) based spinel oxides for temperature sensor applications (복합전이금속(Ni, Co, Mn) 기반 스피넬계 산화물의 소결 거동 및 온도센서 특성 연구)

  • Younghee So;Eunseo Lee;Jinyoung Lee;Sungwook Mhin;Bin Lee;Hyung Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.73-77
    • /
    • 2024
  • The spinel-type oxide (Nix, Mny, Co3-x-y)O4 (NMC) is widely utilized as a material for temperature sensors with a negative temperature coefficient (NTC), finding applications across various industries including electric vehicle battery management systems. Typically, NMC is manufactured using solid-state reaction methods employing powders of Ni, Mn, and Co compounds, with the densification process through sintering recognized as a crucial factor determining the electrical properties of the temperature sensor material. In this study, NMC pellets were synthesized via solid-state reaction and their crystallographic and microstructural characteristics were investigated. Also, the activation energy for densification behavior during the sintering process was determined. According to the analysis results, the room temperature resistance of the NMC pellets was measured at 10.03 Kohm, with the sensitivity parameter, B-value, recorded at 3601.8 K, indicating their potential applicability as temperature sensors across various industrial fields. Furthermore, the activation energy for densification was found to be 273.3 ± 0.4 kJ/mol, providing valuable insights into the thermodynamic aspects of the sintering process of the NMC.

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

Structural and Electrical Properties of K(Ta0.70Nb0.30)O3/K(Ta0.55Nb0.45)O3 Heterolayer Thin Films for Electrocaloric Devices (전기 열량 소자로의 응용을 위한 K(Ta0.70Nb0.30)O3/K(Ta0.55Nb0.45)O3 이종층 박막의 구조적, 전기적 특성)

  • Byeong-Jun Park;Ji-Su Yuk;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.297-303
    • /
    • 2024
  • In this study, KTN heterolayer thin films were fabricated by alternately stacking films of K(Ta0.70Nb0.30)O3 and K(Ta0.55Nb0.45)O3 synthesized using the sol-gel method. The sintering temperature and time were 750℃ and 1 hour, respectively. All specimens exhibited a polycrystalline pseudo-cubic crystal structure, with a lattice constant of approximately 0.398 nm. The average grain size was around 130~150 nm, indicating relatively uniform sizes regardless of the number of coatings. The average thickness of a single-coated film was approximately 70 nm. The phase transition temperature of the KTN heterolayer films was found to be approximately 8~12℃. Moreover, the 6-coated KTN heterolayer film displayed an excellent dielectric constant of about 11,000. As the number of coatings increased, and consequently the film thickness, the remanent polarization increased, while the coercive field decreased. The 6-coated KTN heterolayer film exhibited a remanent polarization and coercive field of 11.4 μC/cm2 and 69.3 kV/cm at room temperature, respectively. ΔT showed the highest value at a temperature slightly above the Curie temperature, and for the 6-coated KTN heterolayer film, the ΔT and ΔT/ΔE were approximately 1.93 K and 0.128×10-6 K·m/V around 40℃, respectively.

Pediatric Radiation Examination by Development of Bismuth Shield Research on Radiation Exposure (비스무스 차폐체 개발을 통한 소아 방사선검사의 피폭에 관한 연구)

  • Hoon Kim;Yong-Keun Kim;Joon-Nyeon Kim;Seung-Hyun Wi;Eun-Kyung Park;Myung-Jun Chae;Bu-Gil Baek;Eun-Hye Kim;Cheong-Hwan Lim
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.205-211
    • /
    • 2024
  • Currently, with the development of technologies, X-ray examinations for medical examinations at hospital is increasing. This study was conducted to help reduce radiation exposure by measuring the exposure dose received by pediatric patients and the spatial dose of the X-ray room. Dosimeters were installed in the eyeball, thyroid gland, breast, gonads and 4 directions at a distance of 30 cm, 40 cm, 50 cm from the phantom. The dose was measured ten times each, before, and after the application of the bismuth shield under the examination conditions of the head, chest, and abdomen of pediatric patients. Under the condition of head examination, when a shielding was applied, the dose reduction rate was 68.58% for the eyeball, 72.88% for the thyroid, 84.2% for the breast, and 72.36% for the gonad. The chest examination showed reductions of 19.56% eyeball, 56.98% thyroid, 1.21% breast, and 0.68% gonad. The abdominal examination showed reduction rates of 2.6% eyeball, 10.67% thyroid, 19.85% breast, and 82.02% gonad. Spatial dose decreased by 62.25% at 30 cm, 61.16% at 40 cm, and 68.68% at 50 cm. When the bismuth shield was applied, there was a decrease in dose across all examinations, as well as a reduction in spatial dose. Continued research on the use of bismuth shields will help radiological technologists achieve their goal of dose reduction.

Stability Review of Formulations Produced with Ozone Free Plasma (제형별 오존 free 플라즈마 안정도 검토)

  • You-Yeon Chun;Ha Hyeon Jo;Moonki Baek;Sun Ju Park;Sofia Brito;Bum-Ho Bin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.143-151
    • /
    • 2024
  • Ozone is a colorless, toxic gas that is produced when nitrogen oxides and hydrocarbons undergo a photochemical oxidation reaction in the sun's rays. Even at low concentrations, it affects the respiratory system, causing coughing and other harmful effects. It was confirmed that ozone was generated from nitrogen plasma among cosmetic raw materials, and it was found that the concentration of ozone decreased after 1 day. On the other hand, ozone was not detected in ozone-free plasma generated with argon gas. Therefore, we aimed to produce ozone-free cosmetics by utilizing ozone-free plasma. For efficient plasma processing, the non-sinking method was utilized to inject the plasma into layer separation mists, toners, and ampoules, and the stability was observed. It was found that the successful injection of plasma in the layer separation mist was higher than the other two formulations, but decreased sharply compared to the toner and ampoule. It was found that the ozone-free plasma used did not affect the stability of the layer separation mist, toner, and ampoule under low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃, 50 ℃) conditions. Therefore, this study suggests the importance of ozone-free plasma for cosmetic potential and stability of each formulation.

Emergency department laparotomy for patients with severe abdominal trauma: a retrospective study at a single regional trauma center in Korea

  • Yu Jin Lee;Soon Tak Jeong;Joongsuck Kim;Kwanghee Yeo;Ohsang Kwon;Kyounghwan Kim;Sung Jin Park;Jihun Gwak;Wu Seong Kang
    • Journal of Trauma and Injury
    • /
    • v.37 no.1
    • /
    • pp.20-27
    • /
    • 2024
  • Purpose: Severe abdominal injuries often require immediate clinical assessment and surgical intervention to prevent life-threatening complications. In Jeju Regional Trauma Center, we have instituted a protocol for emergency department (ED) laparotomy at the trauma bay. We investigated the mortality and time taken from admission to ED laparotomy. Methods: We reviewed the data recorded in our center's trauma database between January 2020 and December 2022 and identified patients who underwent laparotomy because of abdominal trauma. Laparotomies that were performed at the trauma bay or the ED were classified as ED laparotomy, whereas those performed in the operating room (OR) were referred to as OR laparotomy. In cases that required expeditious hemostasis, ED laparotomy was performed appropriately. Results: From January 2020 to December 2022, 105 trauma patients admitted to our hospital underwent emergency laparotomy. Of these patients, six (5.7%) underwent ED laparotomy. ED laparotomy was associated with a mortality rate of 66.7% (four of six patients), which was significantly higher than that of OR laparotomy (17.1%, 18 of 99 patients, P=0.006). All the patients who received ED laparotomy also underwent damage control laparotomy. The time between admission to the first laparotomy was significantly shorter in the ED laparotomy group (28.5 minutes; interquartile range [IQR], 14-59 minutes) when compared with the OR laparotomy group (104 minutes; IQR, 88-151 minutes; P<0.001). The two patients who survived after ED laparotomy had massive mesenteric bleeding, which was successfully ligated. The other four patients, who had liver laceration, kidney rupture, spleen injury, and pancreas avulsion, succumbed to the injuries. Conclusions: Although ED laparotomy was associated with a higher mortality rate, the time between admission and ED laparotomy was markedly shorter than for OR laparotomy. Notably, major mesenteric hemorrhages were effectively controlled through ED laparotomy.

Water-blocking Asphyxia of N95 Medical Respirator During Hot Environment Work Tasks With Whole-body Enclosed Anti-bioaerosol Suit

  • Jintuo Zhu;Qijun Jiang;Yuxuan Ye;Xinjian He;Jiang Shao;Xinyu Li;Xijie Zhao; Huan Xu;Qi Hu
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.457-466
    • /
    • 2023
  • Background: During hot environment work tasks with whole-body enclosed anti-bioaerosol suit, the combined effect of heavy sweating and exhaled hot humid air may cause the N95 medical respirator to saturate with water/sweat (i.e., water-blocking). Methods: 32 young male subjects with different body mass indexes (BMI) in whole-body protection (N95 medical respirator + one-piece protective suit + head covering + protective face screen + gloves + shoe covers) were asked to simulate waste collecting from each isolated room in a seven-story building at 27-28℃, and the weight, inhalation resistance (Rf), and aerosol penetration of the respirator before worn and after water-blocking were analyzed. Results: All subjects reported water-blocking asphyxia of the N95 respirators within 36-67 min of the task. When water-blocking occurred, the Rf and 10-200 nm total aerosol penetration (Pt) of the respirators reached up to 1270-1810 Pa and 17.3-23.3%, respectively, which were 10 and 8 times of that before wearing. The most penetration particle size of the respirators increased from 49-65 nm before worn to 115-154 nm under water-blocking condition, and the corresponding maximum size-dependent aerosol penetration increased from 2.5-3.5% to 20-27%. With the increase of BMI, the water-blocking occurrence time firstly increased then reduced, while the Rf, Pt, and absorbed water all increased significantly. Conclusions: This study reveals respirator water-blocking and its serious negative impacts on respiratory protection. When performing moderate-to-high-load tasks with whole-body protection in a hot environment, it is recommended that respirator be replaced with a new one at least every hour to avoid water-blocking asphyxia.

Thermal Property Test of Natural Sand and Artificial Sand for the Design of Casting Process (주조공정 설계를 위한 자연주물사와 인공주물사의 열물성 시험)

  • Jeong-Ho Nam;Byoung-Jun Lee;Si-Young Kwak
    • Journal of Korea Foundry Society
    • /
    • v.44 no.1
    • /
    • pp.3-8
    • /
    • 2024
  • Reducing industrial waste and improving the atmospheric environment recently have emerged as important tasks for the casting industry. Various types of artificial sand that can replace natural sand have been developed and used to solve problems that arise with the use of conventional foundry sand and to improve the foundry environment. However, only limited physical properties provided by overseas suppliers are known and in-depth comparative analyses with existing natural sand are lacking. For the design of the casting process, a wide range of thermal properties must be secured not only at room temperature but also at high temperatures. In addition, it is important to compare and analyze the differences in thermal properties between existing natural and artificial sand because changes in thermal properties require changes in the design of the casting method. In this study, the thermal behavior of the mold was analyzed through a thermal expansion test of mold blocks for natural and artificial sand., To this end, a thermal property test to evaluate thermal conductivity was performed by determining a temperature range. The results of the experiment, revealed that the thermal conductivity was 5-40% higher in artificial sand than in natural sand, and the coefficient of thermal expansion was about 15% lower for artificial sand. However, there was not a significant difference in specific heat regardless of the composition.

Survivorship Analysis in Asymptomatic COVID-19+ Hip Fracture Patients: Is There an Increase in Mortality?

  • Mason D. Vialonga;Luke G. Menken;Alex Tang;John W. Yurek;Li Sun;John J. Feldman;Frank A. Liporace;Richard S. Yoon
    • Hip & pelvis
    • /
    • v.34 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • Purpose: Mortality rates following hip fracture surgery have been well-studied. This study was conducted to examine mortality rates in asymptomatic patients presenting for treatment of acute hip fractures with concurrent positive COVID-19(+) tests compared to those with negative COVID-19(-) tests. Materials and Methods: A total of 149 consecutive patients undergoing hip fracture surgery during the COVID-19 pandemic at two academic medical centers were reviewed retrospectively. Patients were divided into two groups for comparative analysis: one group included asymptomatic patients with COVID-19+ tests versus COVID-19- tests. The primary outcome was mortality at 30-days and 90-days. Results: COVID-19+ patients had a higher mortality rate than COVID-19- patients at 30-days (26.7% vs 6.0%, P=0.005) and 90-days (41.7% vs 17.2%, P=0.046) and trended towards an increased length of hospital stay (10.1±6.2 vs 6.8±3.8 days, P=0.06). COVID-19+ patients had more pre-existing respiratory disease (46.7% vs 11.2%, P=0.0002). Results of a Cox regression analysis showed an increased risk of mortality at 30-days and 90-days from COVID-19+ status alone without an increased risk of death in patients with pre-existing chronic respiratory disease. Conclusion: Factors including time to surgery, age, preexisting comorbidities, and postoperative ambulatory status have been proven to affect mortality and complications in hip fracture patients; however, a positive COVID-19 test result adds another variable to this process. Implementation of protocols that will promote prompt orthogeriatric assessments, expedite patient transfer, limit operating room traffic, and optimize anesthesia time can preserve the standard of care in this unique patient population.

Direct growth of carbon nanotubes on LiFePO4 powders and the application as cathode materials in lithium-ion batteries (LiFePO4 분말 위 탄소나노튜브의 직접 성장과 리튬이온전지 양극재로의 적용)

  • Hyun-Ho Han;Jong-Hwan Lee;Goo-Hwan Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.317-324
    • /
    • 2024
  • We demonstrate a direct growth of carbon nanotubes (CNTs) on the surface of LiFePO4 (LFP) powders for use in lithium-ion batteries (LIB). LFP has been widely used as a cathode material due to its low cost and high stability. However, there is a still enough room for development to overcome its low energy density and electrical conductivity. In this study, we fabricated novel structured composites of LFP and CNTs (LFP-CNTs) and characterized the electrochemical properties of LIB. The composites were prepared by direct growth of CNTs on the surface of LFP using a rotary chemical vapor deposition. The growth temperature and rotation speed of the chamber were optimized at 600 ℃ and 5 rpm, respectively. For the LIB cell fabrication, a half-cell was fabricated using polytetrafluoroethylene (PTFE) and carbon black as binder and conductive additives, respectively. The electrochemical properties of LIBs using commercial carbon-coated LFP (LFP/C), LFP with CNTs grown for 10 (LFP/CNTs-10m) and 30 min(LFP/CNTs-30m) are comparatively investigated. For example, after the formation cycle, we obtained 149.3, 160.1, and 175.0 mAh/g for LFP/C, LFP/CNTs-10m, and LFP/CNTs-30m, respectively. In addition, the improved rate performance and 111.9 mAh/g capacity at 2C rate were achieved from the LFP/CNTs-30m sample compared to the LFP/CNTs-10m and LFP/C samples. We believe that the approach using direct growth of CNTs on LFP particles provides straightforward solution to improve the conductivity in the LFP-based electrode by constructing conduction pathways.