• Title/Summary/Keyword: Strut Support

Search Result 53, Processing Time 0.023 seconds

Analysis and Design of Support Strut in Innovative Prestressed Scaffolding(IPS) System (혁신적 프리스트레스트 가시설 구조시스템(IPS)에 적용되는 중간 버팀보의 해석 및 설계)

  • Kim, Sung Bo;Han, Man Yop;Kim, Moon Young;Kim, Nak Kyung;Han, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.627-636
    • /
    • 2005
  • The analysis and design procedure of intermediate support strut for the innovative prestressed scaffolding (IPS) system was presented in this paper. The stability check of intermediate support strut is required as the behavior of the strut system is similar to that of the built-up column. The computer analysis model of the support strut was constructed for in-plane and out-of-plane buckling analysis, and the design of the support strut was performed. Using the eigenvalue for the buckling load and the member forces of support strut under design earth pressure, the effective buckling length was estimated. The allowable axial and bending stresses were calculated considering the effective buckling length. The combined stresses due to these axial forces and bending moment were estimated to be satisfied the safety condition of the intermediate support strut.

Development and Performance Evaluation of Rotational Strut Segment for Releasing Stress when uninstalled (버팀보 해체시 안전성 확보를 위한 응력 해제용 굴절지지대 개발 및 성능 평가)

  • Park, Cheol-Yong;Ku, Il-Keun;Kim, Hyun-Sook;Yang, Jee-Youn;Kim, Hyung-Oh
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.109-110
    • /
    • 2018
  • Preloading Strut applied during installation of the wall jack, but additionally serves to minimize the displacement of soil pressure acting upon dissolution due to the difficulty. In this study, we developed an index of support for the release of stress to facilitate the dismantling of the strut uninstall. The refractive support the axial force acting on the strut are supportable, is refracted at minimum load, disassembly should be easy. In order to find the optimal shape and structural stability of the refractive support We have performed the numerical analysis and performance test to determine the final model. We carried out model tests and UTM test in order to understand the refractive performance and durability of the refractive support for optimal model. Results of the test UTM is refracted all shot 5 times within a target hit number, it was found that there is no problem of the refractive performance. Further, the results of model experiments, it was found that to ensure sufficient durability more than the performance target value of the pin joint support structure.

  • PDF

Strut-and-tie model of deep beams with web openings - An optimization approach

  • Guan, Hong
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.361-379
    • /
    • 2005
  • Reinforced concrete deep beams have useful applications in tall buildings and foundations. Over the past two decades, numerous design models for deep beams were suggested. However even the latest design manuals still offer little insight into the design of deep beams in particular when complexities exist in the beams like web openings. A method commonly suggested for the design of deep beams with openings is the strut-and-tie model which is primarily used to represent the actual load transfer mechanism in a structural concrete member under ultimate load. In the present study, the development of the strut-and-tie model is transformed to the topology optimization problem of continuum structures. During the optimization process, both the stress and displacement constraints are satisfied and the performance of progressive topologies is evaluated. The influences on the strut-and-tie model in relation to different size, location and number of openings, as well as different loading and support conditions in deep beams are examined in some detail. In all, eleven deep beams with web openings are optimized and compared in nine groups. The optimal strut-and-tie models achieved are also compared with published experimental crack patterns. Numerical results have shown to confirm the experimental observations and to efficiently represent the load transfer mechanism in concrete deep beams with openings under ultimate load.

Analysis and Design of Concrete Structures with Strut-Tie Model Approach (스트럿-타이 모델 방법에 의한 콘크리트 구조물의 해석 및 설계)

  • 윤영묵;박문호;박승진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.251-256
    • /
    • 1995
  • This paper presents an evaluation of the strength and behavior of a tested simply supported rectangular reinforced eoncrete beam and a design example of a shear wall using two-dimensional strut-tie model with finite element nonlinear analysis. Strut-tie models reflecting the actual support and loading conditions are developed for the beam and shear wall. The strut-tie model not only provides simple solutions for large number of design situations dealing with the entire range of concrete structures which appear to be rather complicated but also predicts the behavior and strength of concrete members.

  • PDF

Strut as a Permanent System using Composite Beams (층고절감형 거더를 이용한 영구 스트러트 공법)

  • Hong, Won-Kee;Park, Seon-Chee;Kim, Jin-Min;Lee, Ho-Chan
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Sheathing work used for excavation in a crowded downtown is generally a temporary strut method using H-piles and sheathing wall includes lagging, CIP, SCW or slurry wall. A temporary strut serving the support for sheathing wall acts to resist the earth pressure, but it shall be removed when installing the underground structure members. A traditional temporary strut might cause the stress imbalance of the sheathing wall when it is demolished, resulting in time extension and the risk of collapse. A traditional temporary strut method thus needs to be improved for schedule and cost reduction, risk mitigation and for preparation for potential civic complaint. A permanent strut method doesn't require installing and demolishing the temporary structure that will lead to reducing the time and cost and the structural risk during the demolition process. And given the girder, the part of the underground structure, serves the role of strut, it can secure the wider interval compared to the traditional method, which enables to secure the wider space for the convenience of excavation as well as enhance the constructability and efficient site management. The thesis was intended to study the composite girder designed to use the strut as permanent structure so as to reduce the excavation and floor height.

Study on the Shaft-Strut Design in the Initial Design Stage (초기설계 단계에서의 스트럿 설계 고찰)

  • Lee, Hwa-Joon;Jang, Hag-Soo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.114-119
    • /
    • 2004
  • For passenger vessels, twin shaft types in propulsion system is generally adopted to provide a high-speed performance in low draught due to restricted operating condition in harbors or water channels. Struts of twin open shaft type support the shafts, bearings, and propellers. Therefore, strut design is needed to consider not only hydrodynamic performance but also structural and noise/vibration performance, In this paper, considerations in strut design at the initial design stage have been discussed based on existing references, numerical calculations, and their comparisons. Also, the strut design of a RoPax ferry has been carried out at the initial design stage, for an example.

L-Shaped Columellar Strut in East Asian Nasal Tip Plasty

  • Dhong, Eun-Sang;Kim, Yeon-Jun;Suh, Man Koon
    • Archives of Plastic Surgery
    • /
    • v.40 no.5
    • /
    • pp.616-620
    • /
    • 2013
  • Background Nasal tip support is an essential consideration for rhinoplasty in East Asians. There are many techniques to improve tip projection, and among them, the columellar strut is the most popular technique. However, the conventional design is less supportive for rotating the tip. The amount of harvestable septal cartilage is relatively small in East Asians. For an optimal outcome, we propose an L-shaped design for applying the columellar strut. Methods To evaluate the anthropometric outcomes, the change in nasal tip projection and the columella-labial angle were analyzed by comparing preoperative and postoperative photographs. The anthropometric study group consisted of 25 patients who underwent the same operative technique of an L-shaped strut graft using septal cartilage and were followed up for more than 9 months. Results There were statistically significant differences between the preoperative and postoperative values in the nasal tip projection ratio and columella-labial angle. We did not observe any complications directly related to the L-shaped columellar strut in the anthropometric study group. Conclusions The L-shaped columellar strut has advantages not only in the controlling of tip projection and rotation, but in that it needs a smaller amount of cartilage compared to the conventional septal extension graft. It can therefore be an alternative technique for nasal tip plasty when there is an insufficient amount of harvestable septal cartilage.

Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach

  • Ozkal, Fatih Mehmet;Uysal, Habib
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.589-597
    • /
    • 2017
  • Strut-and-tie modeling method, which evolved on truss-model approach, has generally been preferred for the design of complex reinforced concrete structures and structural elements that have critical shear behavior. Some structural members having disturbed regions require exceptional detailing for all support and loading conditions, such as the beam-column connections, deep beams, short columns or corbels. Considering the general expectation of exhibiting brittle behavior, corbels are somewhat dissimilar to other shear critical structures. In this study, reinforcement layout of a corbel model was determined by the participation of structural optimization and strut-and-tie modeling methods, and an experimental comparison was performed against a conventionally designed model.

Preventing Varus Deformity in Senile Patients with Proximal Humerus Fractures and Poor Medial Support

  • Kim, Young-Kyu;Kang, Suk-Woong;Kim, Jin-Woo
    • Clinics in Shoulder and Elbow
    • /
    • v.19 no.4
    • /
    • pp.216-222
    • /
    • 2016
  • Background: We investigated the effectiveness of fibular strut allograft augmentation of proximal humerus fractures to prevent varus deformity in patients over the age of 65 years with insufficient medial support. Methods: We analyzed the clinical and radiological outcomes of locking plate fixation with adjunct fibular strut allograft augmentation in 21 patients with proximal humeral fractures. The inclusion criteria were age (65-year-old or older); presence of severe medial comminution; inadequate medial support; and those who could participate in at least a one year follow-up. The average age was 76.4 years. We analyzed each patient's Constant score, our indicator of clinical outcome. As radiological parameters, we analyzed time-to-bone union; restoration of the medial hinge; difference between the immediately postoperative and the last follow-up humeral neck-shaft angles;; and anatomical reduction status, which was assessed using the Paavolainen method. Results: A successful bone union was achieved in all patients at an average of 11.4 weeks. We found that the average Constant score was 74.2, showing a satisfactory outcome. The average difference in the humeral neck-shaft angles between the immediately postoperative time-point and at the final follow-up was $3.09^{\circ}$. According to the Paavolainen method, the anatomical reduction was rated excellent. The medial hinge was restored in 14 of 21 patients. Although we did not find evidence for osteonecrosis, we found that a single patient had a postoperative complication of screw cut-out. Conclusions: Fibular strut allografting as an adjunct treatment of proximal humeral fractures may reduce varus deformity in patients with severe medial comminution.

Absorbable Plate as a Perpendicular Strut for Acute Saddle Nose Deformities

  • Kim, Jong-Gyu;Rhee, Seung-Chul;Cho, Pil-Dong;Kim, Deok-Jung;Lee, Soo-Hyang
    • Archives of Plastic Surgery
    • /
    • v.39 no.2
    • /
    • pp.113-117
    • /
    • 2012
  • Background : Nasal pyramid fractures accompanied by saddle nose deformities are not easily corrected by closed reduction. We used an absorbable plate as a perpendicular strut to support the collapsed "keystone area" and obtained good results. Methods : Between September 2008 and June 2011, 18 patients who had nasal pyramid fractures with saddle nose deformities underwent surgery. Pre- and postoperative facial computed tomographic images and photographs were taken to estimate outcomes. The operative technique included the mucoperichondrial dissection of the nasal septum, insertion of an absorbable plate prepared to an appropriate length to support the "keystone area", and fixation of the absorbable plate strut to the cartilaginous septum. Results : Functional and esthetic outcomes were satisfactory in all patients. Eleven patients assessed the postoperative appearance of the external nose as 'markedly improved' and 7 patients as 'improved'. The 5 surgeons scored the results as a mean of 4.5 on a 5-point scale. Conclusions : The use of an absorbable plate as a perpendicular strut requires no additional procedures because the plate is gradually absorbed. The mechanical strength provided by a buttress between the "keystone area" and the maxillary crest lasts for a long time before the strut is absorbed.