• Title/Summary/Keyword: Structures with Damping System

Search Result 379, Processing Time 0.024 seconds

Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.233-247
    • /
    • 2016
  • The vibration characteristic analysis of sandwich cylindrical shells subjected with magnetorheological (MR) elastomer and constraining layer are considered in this study. And, the discrete finite element method is adopted to calculate the vibration and damping characteristics of the sandwich cylindrical shell system. The effects of thickness of the MR elastomer, constraining layer, applied magnetic fields on the vibration characteristics of the sandwich shell system are also studied in this paper. Additionally, the rheological properties of the MR elastomer can be changed by applying various magnetic fields and the properties of the MR elastomer are described by complex quantities. The natural frequencies and modal loss factor of the sandwich cylindrical shells are calculated for many designed parameters. The core layer of MR elastomer is found to have significant effects on the damping behavior of the sandwich cylindrical shells.

Vibration Analysis of Building Floor Subjected to Walking Loads (보행하중을 받는 건축물 바닥판의 진동해석)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.414-421
    • /
    • 2001
  • Recently, the damping effect of building structures are greatly reduced because the use of non-structures members as like curtain wall are decreased and large open space are in need for the service of buildings. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities as like jumping, running and walking. These excessive vibration make the occupants uncomfortable and the serviceability deterioration. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict a series unit walking load and a periodic function at a node. But this method could not consider the moving effect of walking. In this study, natural frequency and damping ratio of plate structure are evaluated by heel drop tests. And new application of equivalent walking loads are introduced for vibration analysis of real slab system subjected to walking loads. The response obtained from the numerical analysis are compared well to the results measured by experimental tests. It is possible to efficiently analyze the vibration of floor which is subjected to walking loads by applying equivalent walking loads.

  • PDF

Active tendon control of suspension bridges

  • Preumont, Andre;Voltan, Matteo;Sangiovanni, Andrea;Mokrani, Bilal;Alaluf, David
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.31-52
    • /
    • 2016
  • The paper first reviews the theory of active tendon control with decentralized Integral Force Feedback (IFF) and collocated displacement actuator and force sensor; a formal proof of the formula giving the maximum achievable damping is provided for the first time. Next, the potential of the control strategy for the control of suspension bridges with active stay cables is evaluated on a numerical model of an existing footbridge; several configurations are investigated where the active cables connect the pylon to the deck or the deck to the catenary. The analysis confirms that it is possible to provide a set of targeted modes with a considerable amount of damping, reaching ${\xi}=15%$. Finally, the control strategy is demonstrated experimentally on a laboratory mock-up equipped with four control stay cables equipped with piezoelectric actuators. The experimental results confirm the excellent performance and robustness of the control system and the very good agreement with the predictions.

Optimum design of viscous dampers to prevent pounding of adjacent structures

  • Karabork, Turan;Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.437-453
    • /
    • 2019
  • This study investigates a new optimal placement method for viscous dampers between structures in order to prevent pounding of adjacent structures with different dynamic characteristics under earthquake effects. A relative displacement spectrum is developed in two single degree of freedom system to reveal the critical period ratios for the most risky scenario of collision using El Centro earthquake record (NS). Three different types of viscous damper design, which are classical, stair and X-diagonal model, are considered to prevent pounding on two adjacent building models. The objective function is minimized under the upper and lower limits of the damping coefficient of the damper and a target modal damping ratio. A new algorithm including time history analyses and numerical optimization methods is proposed to find the optimal dampers placement. The proposed design method is tested on two 12-storey adjacent building models. The effects of the type of damper placement on structural models, the critical period ratios of adjacent structures, the permissible relative displacement limit, the mode behavior and the upper limit of damper are investigated in detail. The results of the analyzes show that the proposed method can be used as an effective means of finding the optimum amount and location of the dampers and eliminating the risk of pounding.

Vertical isolation of a structure based on different states of seismic performance

  • Milanchian, Reza;Hosseini, Mahmood;Nekooei, Masoud
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.103-118
    • /
    • 2017
  • In vertical seismic isolation (VSI), a building is partitioned intentionally by vertical layers into two dynamically different substructures for seismic response reduction. Initially, a 1-story frame was partitioned into two substructures, interconnected by viscous and visco-elastic links, and seismic responses of the original and the vertically isolated structures (VIS) were obtained, considering a large number of stiffness and mass ratios of substructures with respect to the original structure. Color contour graphs were defined for presentation and investigation of large amounts of output results. Dynamic characteristics of the isolated structures were studied by considering the non-classical damping of the system, and then the effects of viscous and visco-elastic link parameters on the modal damping ratios were discussed. On this basis, three states of mass isolation, interactional state, and control mass were differentiated. Response history analyses were performed by Runge-Kutta numerical method. In these analyses, interaction of isolation ratios and link parameters, on response control of VIS was studied and the appropriate ranges for link parameters as well as the optimal ranges for isolation ratios were suggested. Results show that by using the VSI technique, seismic response reduction up to 50% in flexible substructure and even more in stiff substructure is achievable.

A Study on the Development of Neural Network Predictive PID Controller for the Vibration Control of Building (빌딩의 진동제어를 위한 신경회로망 예측 PID 제어기 개발에 관한 연구)

  • 조현철;이진우;이권순
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.71-74
    • /
    • 1998
  • In recent years, advances in construction techniques and materials have given rese to flexible light-weight structures like high-rise buildings and long-span bridges. Because these structures extremely susceptible to environmental loads, such as earthquakes and strong winds, these random loadings usually produce large deflection and acceleration on these structures. Vibration control system of structures are becoming an integral part of the structural system of the next generation of tall building. The proposed control system is applied to single degree of structure with mass damping and compared with conventional PID and neural network PID control system.

  • PDF

Efficient Vibration Control Approach of Two Identical Adjacent Structures (동일한 인접구조물의 효율적 진동제어방안)

  • Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.56-63
    • /
    • 2014
  • This study proposes a new control approach for efficient vibration suppression of two identical adjacent structures. The conventional control approach of two adjacent structures is to interconnect the two structures with passive, semi-active or active control devices. However, when the two adjacent structures are identical to each other, their dynamical behaviors such as frequency and damping properties are also the same. In this case, the interconnected control devices cannot exhibit the dissipative control forces on the both structures as expected since the relative displacements and velocities of the devices become close to zero. In other words, the interconnection method does not work for the twin structures as enough as expected. In order to solve this problem, we propose several new control approaches to effectively and efficiently reduce the identically-fluctuating responses of the adjacent structures with minimum control efforts. In order to demonstrate the proposed control systems, the proposed several control systems are optimally designed and their control performances are compared with that of the conventional optimal control system where each TMD(tuned mass damper) is installed in each structure for independent control purpose. The simulated results show that one of the proposed control systems(System 04) is able to guarantee enhanced control performance compared with the conventional system.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.