• 제목/요약/키워드: Structures in fire

검색결과 549건 처리시간 0.059초

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

지하철정거장 화재에 대한 강구조물의 내화해석 (A Numerical Analysis of Steel Structures on a Subway Station Fire)

  • 방명석
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.123-127
    • /
    • 2010
  • A fire disaster is very serious in the closing space like subway station. In this study, the simulation on fire diffusion is performed to get the temperature history curve, which is used for the fire resisting structural analysis. Most of subway stations are built by the reinforced concrete structure, but recently steel structures are selected for the larger space or beauty. Steel structures relatively have more weaknesses against fire, so it is necessary to develop the method for evaluating fire-resisting capacity in this kind of structures. The developed method is applied to the subway station in Daegu city. It shows that the developed method can be used to simulate the fire disaster and to get the temperature history curve and evaluate the safety of steel structures against the fire.

The Chinese Performance-based Code for Fire-resistance of Steel Structures

  • Li, Guo-Qiang;Zhang, Chao
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.123-130
    • /
    • 2013
  • In the past two decades, researchers from different countries have conducted series of experimental and theoretical studies to investigate the behaviour of structures in fire. Many new insights, data and calculation methods have been reported, which form the basis for modern interdisciplinary structural fire engineering. Some of those methods are now adopted in quantitative performance-based codes and have been migrated into practice. Mainly based on the achievements in structural fire research at China, the Chinese national code for fire safety of steel structures in buildings has been drafted and approved, and will be released in this year. The code is developed to prevent steel structures subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. This paper presents the main contents of the code, which includes the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and structural components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant check and design of steel components. The analytical approaches employed in the code and their validation works are also presented.

ECC로 피복된 고강도콘크리트의 폭렬저감 및 열적특성에 관한 실험적 연구 (Fire Resistant Performance of Anti-Spalling ECC Layers in High-Strength Concrete Structures)

  • 이재영;권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.199-202
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites(ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 3 HSC specimens are being exposed to fire, in order to examine the influence of various parameters(such as depth of layer=20, 30, 40mm; construction method=lining type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion(3hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

  • PDF

Combined fire and thermo-mechanical analyses of steel-concrete composite structures under fire

  • Kim, Hee-Sunll;Choi, Joon-Ho;Rami, Haj-Ali
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.471-472
    • /
    • 2010
  • In this study, a new modeling framework for predicting temperature and structural behaviors of structures under fire condition is proposed. The proposed modeling framework including fire simulation, heat transfer and structural analysis is applied to simulate fire tests performed on the steel-concrete composite structures in Cardington, UK, for model validations. Good predictions are shown for spatial-temporal temperatures and deflections of fire-damaged steel-concrete structures.

  • PDF

On the Chinese Code on fire safety design of steel building structures

  • Li, G.Q.;Guo, S.X.;Jiang, S.C.
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.395-405
    • /
    • 2005
  • This work introduces to the international scientific community the Chinese Code on fire safety design of steel building structures. The aim of the Code is to prevent the structure of a steel building subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. The main contents of the Code is presented in this paper, including the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant design of steel components. The analytical approach is employed in the Code and the effectiveness of the Code is validated through experiments.

Methodology for investigating the behavior of reinforced concrete structures subjected to post earthquake fire

  • Behnam, Behrouz;Ronagh, Hamid R.;Baji, Hassan
    • Advances in concrete construction
    • /
    • 제1권1호
    • /
    • pp.29-44
    • /
    • 2013
  • Post earthquake fire (PEF) can lead to the collapse of buildings that are partially damaged in a prior ground-motion that occurred immediately before the fire. The majority of standards and codes for the design of structures against earthquake ignore the possibility of PEF and thus buildings designed with those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Life-Safety performance level of structures designed to the ACI 318-08 code after they are subjected to two different earthquake levels with PGA of 0.35 g and 0.25 g. This is followed by a four-hour fire analysis of the weakened structure, from which the time it takes for the weakened structure to collapse is calculated. As a benchmark, the fire analysis is also performed for undamaged structure and before occurrence of earthquake. The results show that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show the damaging effects of post earthquake fire are exacerbated when initiated from second and third floor. Whilst the investigation is for a certain class of structures (regular building, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post earthquake fire in the process of analysis and design and provides some quantitative measures on the level of associated effects.

Probabilistic seismic and fire assessment of an existing reinforced concrete building and retrofit design

  • Miano, Andrea;de Silva, Donatella;Compagnone, Alberto;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.481-494
    • /
    • 2020
  • In this paper, a probability-based procedure to evaluate the performance of existing RC structures exposed to seismic and fire actions is presented. The procedure is demonstrated with reference to an existing old school building, located in Italy. The vulnerability assessment of the building highlights deficiencies under both static and seismic loads. Retrofit operations are designed to achieve the seismic safety. The idea of the work consists in assessing the performance of the existing and retrofitted building in terms of both the seismic and fire resistance. The seismic retrofit and fire resistance upgrading follow different paths, depending on the specific configuration of the building. A good seismic retrofit does not entail an improving of the fire resistance and vice versa. The goal of the current work is to study the variation of response due to the uncertainties considered in records/fire curves selection and to carry out the assessment of the studied RC structure by obtaining fragility curves under the effect of different records/temperature. The results show the fragility curves before and after retrofit operations and both in terms of seismic performance and fire resistance performance, measuring the percent improving for the different limit states.

Fire-after-earthquake resistance of steel structures using rotational capacity limits

  • Pantousa, Daphne;Mistakidis, Euripidis
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.867-891
    • /
    • 2016
  • This paper addresses numerically the behavior of steel structures under Fire-after-Earthquake (FAE) loading. The study is focused on a four-storey library building and takes into account the damage that is induced in structural members due to earthquake. The basic objective is the assessment of both the fire-behavior and the fire-resistance of the structure in the case where the structure is damaged due to earthquake. The combined FAE scenarios involve two different stages: during the first stage, the structure is subjected to the ground motion record, while in the second stage the fire occurs. Different time-acceleration records are examined, each scaled to multiple levels of the Peak Ground Acceleration (PGA) in order to represent more severe earthquakes with lower probability of occurrence. In order to study in a systematic manner the behavior of the structure for the various FAE scenarios, a two-dimensional beam finite element model is developed, using the non-linear finite element analysis code MSC-MARC. The fire resistance of the structure is determined using rotational limits based on the ductility of structural members that are subjected to fire. These limits are temperature dependent and take into account the level of the structural damage at the end of the earthquake and the effect of geometric initial imperfections of structural members.

구조물의 내화공법에 대한 ECC 적용 가능성 (New Fire Resistant Methods of RC Structures Using ECC)

  • 김정희;전병일;이명호;정재민;안상로
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.961-964
    • /
    • 2008
  • 화재에 대한 안전성 확보는 ECC 등과 같은 신소재를 실제 구조물에 적용 또는 실용화하기 위해필요한 중요한 요소 중 하나이다. 본 논문은 콘크리트 구조물에 있어서 내화층을 ECC로 사용하는 공법에 대하여, 이러한 ECC가 규준에서 요구하는 내화성능을 만족하는지 여부를 실험적으로 검토하기 위한 것이다. 이를 위하여 구조물의 화재 온도조건인 HC 및 RABT 화재온도이력곡선을 적용하여 실험을 수행하였다. 실험결과 ECC는 폭렬 및 화재상태에서의 모체콘크리트에 열화가 발생하지 않았다. 또한 기존 콘크리트 및 내화소재와의 상대 비교에 있어서도 ECC가 가장 우수한 내화성능을 보이고있음을 알 수 있었다.

  • PDF