• 제목/요약/키워드: Structured-surface

Search Result 335, Processing Time 0.024 seconds

Synthesis and Properties of Dual Structured Carbon Nanotubes (DSCNTs)

  • Cho, Se-Ho;Kim, Do-Yoon;Heo, Jeong-Ku;Lee, Young-Hee;An, Kay-Hyeok;Kim, Shin-Dong;Lee, Young-Seak
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • In this study, in order to easily provide functional groups on the surface of carbon nanotubes, dual structural multiwalled carbon nanotubes which have crystalline graphite and turbostratic carbon wall were synthesized by modified vertical thermal decomposition method. Synthesized dual structural MWCNTs were characterized by FE-SEM, TGA, HR-TEM, Raman spectroscopy and BET specific surface area analyzer. The average innermost and outermost diameters of the synthesized nanotubes were around 45 and 75 nm, respectively. The large empty inner space and the presence of graphitic carbons on the surface may open potential applications for gas storage and collection of hazardous materials.

  • PDF

Digitization of Unknown Sculptured Surface Using a Scanning Probe (스캐닝 프로브를 이용한 미지의 자유곡면 점군 획득에 관한 연구)

  • 권기복;김재현;이정근;박정환;고태조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • This paper describes a method for digitizing the compound surfaces which are comprised of several unknown feature shapes such as base surface, and draft wall. From the reverse engineering's point of view, the main step is to digitize or gather three-dimensional points on an object rapidly and precisely. As well known, the non-contact digitizing apparatus using a laser or structured light can rapidly obtain a great bulk of digitized points, while the touch or scanning probe gives higher accuracy by directly contacting its stylus onto the part surface. By combining those two methods, unknown features can be digitized efficiently. The paper proposes a digitizing methodology using the approximated surface model obtained from laser-scanned data, followed by the use of a scanning probe. Each surface boundary curve and the confining area is investigated to select the most suitable digitizing path topology, which is similar to generating NC tool-paths. The methodology was tested with a simple physical model whose shape is comprised of a base surface, draft walls and cavity volumes.

Influence of nano-structured alumina coating treatment on shear bond strength between zirconia ceramic and resin cement (나노구조 알루미나 코팅 처리가 지르코니아 도재와 레진 시멘트 사이 전단 결합강도에 미치는 영향)

  • Kim, Dong-Woon;Lee, Jung-Jin;Kim, Kyoung-A;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.354-363
    • /
    • 2016
  • Purpose: The aim of this study was to investigate whether the application of nano-structured alumina coating to the surface of Y-TZP could enhance the bond strength with resin cement. Materials and methods: A total of 80 zirconia plates were prepared and divided into four groups. : 1) airborne particle abrasion treatment (A) : 2) Rocatec treatment after airborne particle abrasion (R) : 3) nano-structured alumina coating treatment after polishing (PC) and 4) nano-structured alumina coating after airborne particle abrasion (AC). Alumina coating was formed by the hydrolysis of aluminium nitride (AlN) powder and heat treatment at $900^{\circ}C$. Coating patterns were observed with FE-SEM. Resin block was bonded to treated zirconia ceramics using resin cement. The shear bond strengths were measured before and after thermocycling. Results: The FE-SEM images show a dense and uniform nano-structured alumina coating structure, which enhances shear bond strength by increasing micro mechanical interlocking to resin cement. PC and AC groups showed higher shear bond strengths than A and R groups before and after thermocycling. A and R groups displayed significant drops in shear bond strength after thermocycling. However, PC and AC groups did not show any meaningful decreases in shear bond strength after thermocycling. Conclusion: Treatment of Y-TZP ceramics with nano-structured alumina coating could significantly increase their shear bond strength.

Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell (유기태양전지의 효율 및 수명 향상을 위한 기능성 계면 소재 연구)

  • Hong, Kihyon;Park, Sun-Young;Lim, Dong Chan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.447-454
    • /
    • 2014
  • Organic solar cells (OSCs) have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible devices. In spite of the high power conversion efficiency (PCE) of 10 %, the OSCs still have a draw back of their low environmental stability due to the oxidization of aluminum cathode and etching of transparent conducting oxide as electrode. To solve these problems, the inverted structured OSCs (I-OSCs) having greatest potential for achieving an improvement of device performances are suggested. Therefore, there are a lot of studies to develope of interface layer based on organic/inorganic materials for the electron transport layer (ETL) and passivation layer, significant advancements in I-OSCs have driven the development of interface functional materials including electron transport layer. Recent efforts to employing 2D/3D zinc oxide (ZnO) based ETL into I-OSCs have produced OSCs with a power conversion efficiency level that matches the efficiency of ~9 %. In this review, the technical issues and recent progress of ZnO based ETL in I-OSCs to enhancement of device efficiency and stability in terms of materials, process and characterization have summarized.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

Chemical Sensors Based on Distributed Bragg Reflector Porous Silicon Smart Particles

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • Sensing characteristics for porous smart particle based on DBR smart particles were reported. Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{++}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Three different surface-modified DBR smart particles have been prepared and used for sensing volatile organic vapors. For different types of surface-modified DBR smart particles, the shift of reflectivity mainly depends on the vapor pressure of analyte even though the surfaces of DBR smart particles are different. However huge difference in the shift of reflectivity depending on the different types of surface-modified DBR smart particles was obtained when the vapor pressures are quite similar which demonstrate a possible sensing application to specify the volatile organic vapors.

Analysis on Wetting Behavior of A Lamellar Type Wet Channels in An Evaporative Heat Exchanger (층상구조를 가진 증발식 열교환기 습채널의 표면 젖음도 해석)

  • Oh, Dong-Wook;Park, Jae Bum;Song, Chan Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.283-287
    • /
    • 2016
  • One of the most important factors for determining the thermal performance of an evaporative cooling system is the wettability of the evaporative heat exchanger surface. Evaporation of a widely spread water film on the heat exchanger surface promotes heat transfer between the "dry" air and "wet" air passages. Hydrophilic coating is generally applied on the heat exchanger surfaces to increase the wettability of the heat exchanger surface and the COP of the evaporative cooling system. In this paper, a simple lamellar patterned structure is suggested to maximize the spreading of a water film on the vertically oriented walls. The capillary height of the lamellar structured grooves is analyzed through a theoretical model, and the results are compared with the numerical analysis through a finite element analysis tool, SE-FIT. A good agreement between the theoretical model and the numerical analysis can be observed as long as the channel depth is comparable to or larger than the channel width of the lamellar structure.

Development of Inverted Organic Photovoltaics with Anion doped ZnO as an Electron Transporting Layer

  • Jeong, Jae Hoon;Hong, Kihyon;Kwon, Se-Hun;Lim, Dong Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.490-497
    • /
    • 2016
  • In this study, 3-dimensional ripple structured anion (chlorine) doped ZnO thin film are developed, and used as electron transporting layer (ETL) in inverted organic photovoltaics (I-OPVs). Optical and electrical characteristics of ZnO:Cl ETL are investigated depending on the chlorine doping ratio and optimized for high efficient I-OPV. It is found that optimized chlorine doping on ZnO ETL enhances the ability of charge transport by modifying the band edge position and carrier mobility without decreasing the optical transmittance in the visible region, results in improvement of power conversion efficiency of I-OPV. The highest performance of 8.79 % is achieved for I-OPV with ZnO:Cl-x (x=0.5wt%), enhanced ~10% compared to that of ZnO:Cl-x (x=0wt%).

A New Design Method of Sliding Mode Fuzzy Controller with Robust and fast Performance (강인성과 응답 성능을 고려한 슬라이딩모드 퍼지 제어기 설계에 관한 연구)

  • 박창우;이장욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.425-428
    • /
    • 1998
  • This paper proposes a new fuzzy controller using variable structure control theory. In this paper, after the time-varying fuzzy sliding surface is designed, the fuzzy rules are defined based on the variable structure control theory. This design method makes the fuzzy controller design more structured and can guarantee the stability and robustness of the fuzzy controller and overcome the shortcoming of the variable structure system. Through computer simulation and experiment of nonlinear inverted pendulum system, this thesis demonstrate that system has the robustness against disturbance and modelling error, and the tracking performance of it is improved.

  • PDF

Soil Conditioning for better Soil Management (합리적(合理的) 토양관리(土壤管理)를 위한 토양개량(土壤改良))

  • De Doodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.311-324
    • /
    • 1992
  • Polymeric substances in organic matter of soils aggregate soil particles into a crumb structure which greatly influences such properties as water movement, aeration and heat transfer. Poorly-structured soils may be improved by the incorporation of synthetic polymers where the main objects are : promoting germination or establishing crops, improving drainage, combating wind and water erosion, and reducing evaporation from the surface of soil under arid condition.

  • PDF