• Title/Summary/Keyword: Structured Perturbation

Search Result 27, Processing Time 0.019 seconds

Synthesis of robust linear quadratic regulator (Robust linear quadratic regulator의 설계)

  • 김종철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.275-280
    • /
    • 1986
  • 본 연구는 LQR을 Robust하게 설계하는 방법을 다루었다. Unstructured Perturbation에 대응하기 좋으며 쉽게 다룰 수 있는 주파수 응답형 LQR criteria 선정법과, LQR의 변형으로서 Structured Perturbation에 대하여 유효한 Performance Criteria Insensitive Control을 제시하고 효과를 살펴보았다.

  • PDF

Analysis of structured singular value with mixed sensitivity problem in robust performance (혼합된 감도함수를 이용한 구조적 특이치의 견실성능문제 분석)

  • 방경호;엄태호;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.482-485
    • /
    • 1993
  • This paper deals with structured singular value and mixed sensitivity problem for robust performance. We derive the sufficient condition that mixed sensitivity problem satisfies structured singular value in robust performance problem. And we show the bound of perturbation between structured singular value and norm of mixed sensitivity functions.

  • PDF

Robustness analysis of pole assignment in a specified circle for perturbed systems (섭동 시스템에 대한 규정된 원 내로의 극점배치 견실성 해석)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.78-82
    • /
    • 1995
  • In this paper, we consider the robustness analysis problem in state space models with linear time invariant perturbations. Based upon the discrete-time Lyapunov approach, sufficient conditions are derived for the eigenvalues of perturbed matrix to be located in a circle, and robustness bounds on perturbations are obtained. Spaecially, for the case of a diagonalizable hermitian matrix the bound is given in terms of the nominal matrix without the solution of Lyapunov equation. This robustness analysis takes account not only of stability robustness but also of certain types of performance robustness. For two perturbation classes resulting bounds are shown to be improved over the existing ones. Examples given include comparison of the proposed analysis method with existing one.

  • PDF

The estimation of the robustness bounds of the systems having structured perturbations

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.420-423
    • /
    • 1995
  • The stability of system is one of the important aspects and to judge system's stability is another complicated problem. Previously, new technique derived from relaxing Lyapunov conditions has been already introduced and in this paper, this proposed technique applies to the practical dynamic systems. This utility of numerical procedures prove the comparable improvements of the estimation of robustness for dynamic systems having structured (bounded) perturbations.

  • PDF

An Extended Finite Impulse Response Filter for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 확장 유한 임펄스 응답 필터)

  • Han, Sekyung;Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • In this paper, a finite impulse response (FIR) filter is proposed for discrete-time nonlinear systems. The proposed filter is designed by combining the estimate of the perturbation state and nominal state. The perturbation state is estimated by adapting the optimal time-varying FIR filter for the linearized perturbation model and the nominal state is directly obtained from the nonlinear nominal trajectory model. Since the FIR structured estimators use the finite horizon information on the most recent time interval, the proposed extended FIR filter satisfies the bounded input/bounded output (BIBO) stability, which can't be obtained from infinite impulse response (IIR) estimators. Thus, it can be expected that the proposed extended FIR filter is more robust than IIR structured estimators such as an extended Kalman filter for the round-of errors and the uncertainties from unknown initial states and uncertain system model parameters. The simulation results show that the proposed filter has better performance than the extended Kalman filter (EKF) in both robustness and fast convergency.

Robust controller design of underwater vehicle against structured perturbation (구조화된 교란에 대한 수중 운동체의 견실 제어기 설계)

  • 이갑래;김삼수;이재명;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.850-856
    • /
    • 1992
  • The problem of robust control of a underwater vehicle subject to variation of a real parameter and velocity is considered. The controller set which stabilized perturbed plant is chosen using numerical gradient method and the controller is used for nominal performance and robust performance. Simulation results are presented to show that the precise montion control of the controller is accomplished under perturbation in the system.

  • PDF

Robust Stabilization Algorithms of Plants Subject to Structured Parameter Perturbations (내개 변수 섭동 구조를 갖는 플랜트의 강인 안정화 알고리즘)

  • 황유섭;이상혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 1989
  • This paper is concerned with robust stabilization of single input or single output systems. Based on the region of non-destabilizing perturbations some approaches to design which allow the given of structured perturbation of plant parameters and their gradient optimization are given. These algorithms iteratively enlarge the stability hypershere in plant parameter space and can be used to design a controller to stabilize a plant subject to given ranges of parameter excursions.

  • PDF

A study on stability bounds of time-varying perturbations (시변 섭동의 안정범위에 관한 연구)

  • Kim, Byung-Soo;Han, Hyung-Seok;Lee, Jang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 1997
  • The stability robustness problem of linear discrete-time systems with time-varying perturbations is considered. By using Lyapunov direct method, the perturbation bounds for guaranteeing the quadratic stability of the uncertain systems are derived. In the previous results, the perturbation bounds are derived by the quadratic equation stemmed from Lyapunov method. In this paper, the bounds are obtained by a numerical optimization technique. Linear matrix inequalities are proposed to compute the perturbation bounds. It is demonstrated that the suggested bound is less conservative for the uncertain systems with unstructured perturbations and seems to be maximal in many examples. Furthermore, the suggested bound is shown to be maximal for the special classes of structured perturbations.

  • PDF

Robust Nonlinear $H_2$/$H_{\infty}$Control for a Parallel Inverted Pendulum (병렬형 역진자와 비선형 $H_2$/H_{\infty}강인제어)

  • Han, Seong-Ik;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1065-1074
    • /
    • 2000
  • A robust nonlinear $H_2$/$H_{\infty}$ control method for a parallel inverted pendulum with structured perturbation and dry friction is proposed. By the random input describing function techniques, the nonlinear dry friction is approximated into the quasi-linear system. Introducing the quadratic robustness theorem, the robust $H_2$/$H_{\infty}$ control system is constructed for the quasi-linear perturbed system. But it is difficult to design a controller due to the nonlinear correction term in Riccati equation. With some transformations on the Riccati equation containing nonlinear correction term, the design of the robust nonlinear controller can be done easily. Hence when the stiffness and mass of the parallel inverted pendulum vary in certain ranges, the proposed control scheme has the robustness for both the structured perturbation and dry friction. The results of computer simulation show the effectiveness of our proposed control method.

Robust Pole Assignment Control for Linear Systems with Structured Uncertainty (구조적 불확실성을 갖는 선형계의 강인한 극배치 제어)

  • Kim, Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 1992
  • This paper deals with the problem of robust pole-assignment control for linear systems with structured uncertainty. It considers two cases whose colsed-loop characteristic equations are presented as a family of interval polynomial and polytopic polynomial family respectively. We propose a method of finding the pole-placement region in which the fixed gain controller guarantees the required damping ratio and stability margin despite parameter perturbation. Some results of Kharitonov like stability and two kinds of transformations are included. As an illustrative example, we show that the proposed method can apply effectivly to the single magnet levitation system including some uncertainties (mass, inductance etc.).

  • PDF