• 제목/요약/키워드: Structure-based search

검색결과 752건 처리시간 0.066초

이동객체궤적에 대한 효율적인 최근접 이웃 검색 (Efficient Nearest Neighbor Search on Moving Object Trajectories)

  • 김규재;박영희;조우현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.418-421
    • /
    • 2014
  • 스마트폰과 같은 이동 통신 매체의 발달과 LTE, NFC, RFID 등 무선통신의 발달로 실시간으로 이동 객체의 위치데이터를 수집하여 활용하는 위치 기반의 서비스들이 다방면의 개발에 이용되고 있다. 이에 따라 대용량의 이동객체 위치 데이터들을 효율적으로 저장하는 방법과 여러 질의를 좀 더 빠르게 처리할 수 있는 방법들에 대한 연구들이 진행 중이다. 본 논문에서는 Douglas-Peucker 알고리즘을 응용하여 대용량의 이동객체궤적 데이터를 단순화하여 색인 구조를 생성하고 이 색인 구조를 이용하여 최근접 이웃 검색 질의를 효율적으로 처리할 수 있는 알고리즘을 제안한다. 제안된 방법으로 대용량의 데이터가 더 적은 양의 데이터로 단순화 되고 얼마나 더 효율적으로 질의를 처리하는지 실험을 통하여 확인하였다.

  • PDF

Real-Time Non-Local Means Image Denoising Algorithm Based on Local Binary Descriptor

  • Yu, Hancheng;Li, Aiting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.825-836
    • /
    • 2016
  • In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.

SSR-Primer Generator: A Tool for Finding Simple Sequence Repeats and Designing SSR-Primers

  • Hong, Chang-Pyo;Choi, Su-Ryun;Lim, Yong-Pyo
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.189-193
    • /
    • 2011
  • Simple sequence repeats (SSRs) are ubiquitous short tandem duplications found within eukaryotic genomes. Their length variability and abundance throughout the genome has led them to be widely used as molecular markers for crop-breeding programs, facilitating the use of marker-assisted selection as well as estimation of genetic population structure. Here, we report a software application, "SSR-Primer Generator " for SSR discovery, SSR-primer design, and homology-based search of in silico amplicons from a DNA sequence dataset. On submission of multiple FASTA-format DNA sequences, those analyses are batch processed in a Java runtime environment (JRE) platform, in a pipeline, and the resulting data are visualized in HTML tabular format. This application will be a useful tool for reducing the time and costs associated with the development and application of SSR markers.

PDA를 위한 스크롤 및 정보 제시 방법의 인간공학적 설계 (Ergonomic Design and Evaluation of Scroll and Information Presentation Methods on a PDA)

  • 백종민;한성호;최훈우;정기효
    • 대한인간공학회지
    • /
    • 제24권1호
    • /
    • pp.19-26
    • /
    • 2005
  • Mobile internet access using such devices as PDAs and cellular phones becomes popular as mobile technologies grow. However, the characteristics of small screen devices such as small screen size and pen-based input cause many usability problems. In this study, a human factors experiment was conducted to identify the factors affecting the usability of information search on a PDA. Factors manipulated in the experiment included use of wheel equipment, scroll dimension, and screen orientation. Task completion time, error frequency, and subjective satisfaction level were measured. In addition, various users' behavioral patterns such as scanning routes and mainly used scrolling methods were analyzed. Scroll dimension has a significant effect on task completion time. Scroll equipment and screen orientation affect subjective satisfaction level. The results could be applied to designing information structure of web sites for mobile use by providing vertical scroll and using external scroll equipments.

A general method for active surface adjustment of cable net structures with smart actuators

  • Wang, Zuowei;Li, Tuanjie
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.27-46
    • /
    • 2015
  • Active surface adjustment of cable net structures is becoming significant when large-size cable net structures are widely applied in various fields, especially in satellite antennas. A general-duty adjustment method based on active cables is proposed to achieve active surface adjustment or surface profile reconfiguration of cable net structures. Piezoelectric actuators and voice coil actuators are selected for constructing active cable structures and their simplified mechanical models are proposed. A bilevel optimization model of active surface adjustment is proposed based on the nonlinear static model established by the direct stiffness method. A pattern search algorithm combined with the trust region method is developed to solve this optimization problem. Numerical examples of a parabolic cable net reflector are analyzed and different distribution types of active cables are compared.

An optimized mesh partitioning in FEM based on element search technique

  • Shiralinezhad, V.;Moslemi, H.
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.311-320
    • /
    • 2019
  • The substructuring technique is one of the efficient methods for reducing computational effort and memory usage in the finite element method, especially in large-scale structures. Proper mesh partitioning plays a key role in the efficiency of the technique. In this study, new algorithms are proposed for mesh partitioning based on an element search technique. The computational cost function is optimized by aligning each element of the structure to a proper substructure. The genetic algorithm is employed to minimize the boundary nodes of the substructures. Since the boundary nodes have a vital performance on the mesh partitioning, different strategies are proposed for the few number of substructures and higher number ones. The mesh partitioning is optimized considering both computational and memory requirements. The efficiency and robustness of the proposed algorithms is demonstrated in numerous examples for different size of substructures.

사용자 질의 의미 해석을 위한 온톨로지 지식 기반 검색 (Ontology Knowledge based Information Retrieval for User Query Interpretation)

  • 김난주;표혜진;정훈;최의인
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.245-252
    • /
    • 2014
  • 시맨틱 검색은 논리적으로 표현된 지식 베이스를 사용하여 현재의 키워드 기반 검색보다 더 정확한 결과를 제공할 수 있다. 그러나 일반 사용자는 지식 기반의 복잡하고 정형화된 질의어와 스키마를 잘 알지 못한다. 그래서 검색 시스템은 사용자 키워드의 의미를 해석할 수 있어야 한다. 본 논문에서는 멀티미디어 콘텐츠의 시맨틱 검색을 위한 사용자 질의 의미 해석 시스템을 설명한다. 제안한 시스템은 도메인 온톨로지 기반으로 구축된 지식 베이스의 정형화된 구조에 의미 해석 과정이 통합된 온톨로지 지식 베이스 기반 검색 시스템이다.

통합적 인공지능 기법을 이용한 결함인식 (Crack Identification Based on Synthetic Artificial Intelligent Technique)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

통합적 인공지능 기법을 이용한 결함인식 (Crack identification based on synthetic artificial intelligent technique)

  • 심문보;서명원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.