• 제목/요약/키워드: Structure vibration analysis

검색결과 2,112건 처리시간 0.04초

트러스코어형 샌드위치 판구조물의 진동파워흐름에 관한 연구 (A Study on Vibration Power Flow of Truss Core Type Sandwich Plate Structure)

  • 구경민;김동영;홍도관;박일수;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.863-866
    • /
    • 2002
  • In this study, we tried to grasp the characteristic of vibration power flow for the truss core type sandwich plate structure. As the result of the finite element analysis, this paper shows that the vibration power flow characteristic of truss core type sandwich plate structure is understood and the vibration power flow of upper plate according to the mode shape of structure is various. Also it presents the vibration power flow is affected by reinforced structure.

  • PDF

스타디움 구조물의 실용적인 진동해석을 위한 등가보요소의 적용 (Application of Equivalent Beam Element for Practical Vibration Analysis of Stadium Structure)

  • 김기철
    • 한국지진공학회논문집
    • /
    • 제8권5호통권39호
    • /
    • pp.91-99
    • /
    • 2004
  • 일반적으로 경기장 구조물은 고유진동수가 낮게 나타나고 있으며 관람객의 반복적인 움직임에 의하여 공진 또는 공진과 유사한 거동이 일어날 수 있다. 따라서 진동에 대한 경기장 구조물의 안전성 및 사용성 검토가 요구되고 있으며 이를 위한 실용적인 정밀해석이 필요하다. 경기장 구조물의 경제적이고 안전한 설계를 위해서는 경기장 구조물에 가해지는 동적하중과 경기장 구조물의 거동에 대한 정확한 분석이 있어야 한다. 경기장 구조물의 정확한 진동해석을 위해서는 경기장 구조물을 세분화하여 모형화해야 한다. 구조물을 세분화하여 모형화할 경우에는 절점 수가 매우 많아지므로 해석시간이 길어지게 되며, 절점수가 제한되어 있는 상용프로그램으로는 해석이 불가능할 수도 있다. 따라서 본 논문에서 제안한 등가보요소를 이용한 경기장 구조물의 모형화 방법을 적용하여 진동해석을 수행할 경우에는 해석 구조물의 절점을 현저하게 줄일 수 있으므로 실용적인 정밀해석이 가능하게 된다.

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • 장태진;김동현;이인
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

국부적 유연성이 차량 시스템 동특성에 미치는 영향 (Flexibility Effects of the Vehicle Components on the Dynamic Characteristics of the Vehicle Systems)

  • 이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.682-686
    • /
    • 2001
  • A fundamental structural design consideration for a vehicle is the overall vibration characteristics in bending and torsion. Vibration characteristics of a vehicle system are mainly influenced by dynamic stiffness of the vehicle body structure and material and physical properties of the components attached to the vehicle body structure. The first step in satisfying this requirement is to obtain a satisfactory dynamic model of the vehicle structure. In this paper. modeling techniques of the vehicle components are presented and the effects of the vehicle components on the vibration characteristics of the vehicle are investigated,

  • PDF

센서최적배치 기법에 의한 원통형 구조물의 진동장 예측 (Estimation of Vibration Field of a Cylindrical Structure Derived by Optimal Sensor Placement Methods)

  • 정병규;정의봉;조대승;김국현;강명환
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.381-389
    • /
    • 2014
  • This study is concerned with the estimation of vibration-field of a cylindrical structure by modal expansion method(MEM). MEM is a technique that identifies modal participation factors using some of vibration signals and natural modes of the structure: The selection of sensor locations has a big influence on predicted vibration results. Therefore, this paper deals with four optimal sensor placement( OSP) methods, EFI, EFI-DPR, EVP, AutoMAC, for the estimation of vibration field. It also finds optimal sensor locations of the cylindrical structure by each OSP method and then performs MEMs. Predicted vibration results compared with reference ones obtained by forced response analysis. The standard deviations of errors between reference and predicted results were also calculated. It is utilized to select the most suitable OSP method for estimation of vibration field of the cylindrical structure.

A spectrally formulated finite element method for vibration of a tubular structure

  • Horr, A.M.;Schmidt, L.C.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.209-226
    • /
    • 1996
  • One of the major divisions in the mathematical modelling of a tubular structure is to include the effect of the transverse shear stress and rotary inertia in vibration of members. During the past three decades, problems of vibration of tubular structures have been considered by some authors, and special attention has been devoted to the Timoshenko theory. There have been considerable efforts, also, to apply the method of spectral analysis to vibration of a structure with rectangular section beams. The purpose of this paper is to compare the results of the spectrally formulated finite element analyses for the Timoshenko theory with those derived from the conventional finite element method for a tubular structure. The spectrally formulated finite element starts at the same starting point as the conventional finite element formulation. However, it works in the frequency domain. Using a computer program, the proposed formulation has been extended to derive the dynamic response of a tubular structure under an impact load.

차세대 반도체, TFT-LCD Fab 구조설계를 위한 PC형 격자보에 대한 동적 특성 평가 및 개선방안 (A Dynamic Structure Design of PC type Sub-structure for next Semi-conduct, TFT-LCD Fab based on Dynamic Test and Simulation)

  • 손성완;김강부;전종균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.237-242
    • /
    • 2004
  • In design stage of high precision manufacture/inspection FAB building, it is necessary to investigate the vibration allowable limits of high precision equipment and to study a structure dynamic characteristics of C/R and Sub-structure in order to provide a structure vibration environment to satisfy thess allowable limits. The aim of this study is to investigate the dynamic characteristics of PC-Type mock-up structures designed for next TFT LCD FAB through vibration measurement and analysis procedure, therefore, to provide a proper dynamic structure design for high precision manufacture/inspection work process, which satisfy thess allowable limits.

  • PDF

디지털 실험장치를 이용한 판의 모우드 해석 (Model Analysis of Plate using by Digital Test System)

  • 홍봉기;배동명;배성용
    • 수산해양기술연구
    • /
    • 제29권1호
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

정수장용 교반기 시설의 과진동 원인 분석 (Investigation on the Excessive Vibration of A Mixer Facility in A Water Purification Plant)

  • 박진호;이정한;김봉수;강문후;김동수;주윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.312-316
    • /
    • 2002
  • Recently, mixers are being widely used in the water purification plant in order to increase the filtration efficiency. It has been found that a severe vibration was being felt on a upper structure of a mixer facility during steady state operation. The cause of the excessive vibration of the structure to which the mixer's shaft is supported has been evaluated through modal analysis on the shaft and vibration measurements during operation. The fundamental natural frequency of the mixer's shaft is found to be around 1.8 Hz and the main vibratory frequency around 30 Hz. It has been tuned out that the main vibratory frequency, 30 Hz is coincident with the fundamental holding frequency of the upper structure, and that the acceleration signal of the upper structure and the displacement signal of the mixer's shaft showed highly coherent to each other. Accordingly, it reveals that the main cause of the excessive vibration is due not to the mixer's vibration but to the natural frequency of the upper structure excited by flow turbulence.

  • PDF