• Title/Summary/Keyword: Structure vibration

Search Result 4,307, Processing Time 0.03 seconds

Seismic Performance Evaluation of a Cone-type Friction Pendulum Bearing System (원추형 마찰진자베어링의 내진성능평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Park, Kyung-Rock;Kim, Nam-Sik;Jung, Duk-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.23-33
    • /
    • 2011
  • In this study, a CFPBS (Cone-type Friction Pendulum Bearing System) was developed which controls the acceleration delivered to the structure to prevent damage and degradation of the critical communication equipment in case of an earthquake. The isolation performance of the CFPBS was evaluated by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced from the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with the seismic isolator system consisting of four CFPBSs. In order to verify its earthquake-resistant performance, a numerical analysis program was created from the equation of the CFPBS induced from the equations of motion. A simplified theoretical equation of the CFPBS was proposed to manufacture the equipment which could demonstrate the necessary performance. Artificial seismic waves satisfying the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and skew angle of the friction surface were considered for numerical analysis with El Centro NS (1940), Kobe NS (1995) and artificial seismic waves. The CFPBS isolation performance evaluation was based on the results of numerical analysis and the executed comparative analysis between the results from numerical analysis and the simplified theoretical equation under the same conditions.

Organotitanium Chemistry (IV). The Molecular and Electronic Structure of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;and\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ (유기티탄 화학 (제4보). $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;및\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$의 분자 및 전자구조)

  • Lee Hoosung;Uh Young Sun;Sohn Youn Soo
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.92-97
    • /
    • 1975
  • The molecular and electronic structures of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;and\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ have been studied by employing cryoscopic and electronic spectroscopic methods. The cryoscopic data have shown that the dimeric tetraphenoxytitanium(Ⅳ) phenolate in solid undergoes complete dissociation into monomer in solution and also the chlorocomplex starts dissociation around the concentration of 8 m mole/l. Therefore, these two Ti-complexes are pentacoordinated in dilute solution and the local symmetry of the titanium ion in these complexes seems to be trigonalbipyramid. The electronic spectra of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH$ and $Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ each show two band, systems, one vibration-structural band characteristic of the aromatic ring in the near UV and another visible band at 26.8 kK, 29.6 kK, respectively, which are assigned as a ligand to metal charge transfer band corresponding to $^1A_1''{\to}^1E'\;or\;^1E''$ transition.

  • PDF

Swelling Behavior and Hydration Number of Langmuir-Blodgett Films of Metal-Palmitate Deposited on a Piezoelectric Quartz Crystal Plate (압전수정결정판 위에 적층된 금속-Palmitate Langmuir-Blodgett 막의 팽창거동 및 수화수)

  • Jong-Jae Chung;Byung-Il Seo;Hai-Won Lee
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.302-308
    • /
    • 1993
  • Monolayers of calcium palmitate were deposited on a piezoelectric quartz crystal plate by the Langmuir-Blodgett(LB) technique, and it was found from frequency changes of the quartz crystal deposited LB films. The usual carbonyl absorbance at 1704 cm$^{-1}C$ was replaced by the split band in the 1540~1590 cm$^{-1}C$. The two absorptions at 1580 cm$^{-1}C$ and 1540 cm$^{-1}C$ were assigned to the antisymmetric stretching vibration of the calcium carboxylate group and the hydrated species due to the lowering carbonyl stretching frequency by hydrogen bonding$^1$ respectively. Besides, it was demonstrated by X-ray diffraction analysis. The swelling behaviour of LB films in water phase at 23$^{\circ}C$ was observed from the frequency change of the LB films deposited quartz crystal with time. Calcium palmitate LB films has been found to swell substantially in water without flaking, whereas hexadecanol LB films hardly swelled in water. Amount of swelling of calcium palmitate LB films was equivalent to 47 wt.${\%}$ of the dry LB films, which means that ca. 7 water molecules were incorporated per calcium palmitate amphiphile. Chemical structure of calcium palmitate LB film was estimated as [CH$_3$(CH$_2$)$_{14}$COO]$_2$Ca${\cdot}$XH$_2$O, and the hydration number was 1.

  • PDF

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Electric Power Generation from Piezoelectric Ceramics (압전 세라믹을 이용한 전기 발전)

  • Paik, Jong-Hoo;Shin, Bum-Seung;Lim, Eun-Kyeong;Kim, Chang-Il;Im, Jong-In;Lee, Young-Jin;Choi, Byung-Hyun;Kim, Dong-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.304-304
    • /
    • 2006
  • One method of Electric Power Generation is to use piezoelectric materials, which form transducers that are able to interchange electrical energy and mechanical force or strain. This study describes the fabrication and properties of piezoelectric transducers for Power Generation application. The structure of the transducers was ceramic-metal-ceramic 3-layered parallel type The center metal layer of phosphorous bronze was bonded by two piezoelectric layers of which have sputtered Ag/Cu(or Ni/Cu) electrode layers on both sides.. The Energy generated by the vibration of piezoelectric transducers Can be achieved by adjusting a suitable piezoelectric constant and mechanical structures. The piezoelectric material used in this application showed the electrical properties of r=4400, $d_{33}\;=\;750\;(10^{-12}\;m/V)$, $d_{31}\;=\;-300\;(10^{-12}\;m/V)$, $k_{33}\;=\;71%$, $Qm\;=\;85$, $T_c\;=\;210^{\circ}C$.

  • PDF

Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal (Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성)

  • Park, Soo-Jin;Cho, Mi-Hwa;Kim, Seok;Kwon, Soo-Han
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.737-741
    • /
    • 2005
  • In this study, the effect of copper content on the NO removal efficiency by Cu/MCM-41 has been investigated. MCM-41 was prepared by hydrothermal synthesis using a gel mixture of colloidal silica solution and cetyltrimethylammonium. Cu/MCM-41 was manufactured with copper content (5, 10, 20, and 40%) in Cu(II) acetylacetonate. The surface properties of MCM-41 were investigated by using pH, XRD, and FT-IR analyses. $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET's equation and Boer's t-plot methods. NO removal efficiency was confirmed by gas chromatography technique. From the experimental results, the MCM-41 was analyzed to have the surface functional groups of Si-OH and Si-O-Si and the characteristic diffraction lines (100), (110), (200), and (210) corresponding to a hexagonal arrangement structure. The copper content supported on MCM-41 appeared to increase the NO removal efficiency in spite of decreasing the specific surface areas or micropore volumes. Consequently, it was found that the copper content in Cu/MCM-41 played an important role in improving the NO removal efficiency, which was mainly attributed to the catalytic reactions.

Bearing Behavior Characteristics of Pressure Penetrating Steel Pipe Pile Under Compression Load (압축하중을 받는 압입강관말뚝의 지지거동 특성)

  • Kwon, Ohkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.5-13
    • /
    • 2015
  • The pressure penetrating steel pipe pile method which can be constructed in a narrow space using the hydraulic jack is used on the foundation reinforcement, extension of the structure and basement, restoration of the differential settlement etc.. This method is possible to construct in narrow areas and low story height, the non-noise and non-vibration works, and it is possible for the construction site to be clean without slime. And it is possible to confirm the bearing capacity of pile due to penetrating the pile with the compression load of hydraulic jack. In this study, the static load test with the load-transfer test was carried out to investigate the bearing behavior characteristics of the pressure penetrating steel pipe pile. Four series of static load test were executed to investigate the variation of bearing behavior of the pressure penetrating steel pipe pile. As a result of these tests, the allowable load of the pressure penetrating steel pipe was evaluated more than 637 kN, and the shaft resistance corresponding to 81~86% of each applied load was mobilized with only a small portion of the base resistance acting. And it was also evaluated that the unit skin friction was mobilized to maximum value after two months.

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.

Vibrational Properties of High Damping Polymer Concrete with Hybrid Damper (복합구조 댐퍼를 적용한 고 감쇠 폴리머 콘크리트의 진동 특성에 관한 연구)

  • Kim, Jeong-Jin;Choi, Kyung-Suk;We, Joon-Woo;Seok, Won-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.135-142
    • /
    • 2020
  • In the case of a concrete structure, vibration problems occur under various conditions because of its low damping performance. To solve this problem, a study on the high damping performance of the polymer concrete with hybrid damper has recently been increased. Since water is not used in polymer concrete, the curing time is short. Also, the physical properties and dynamic properties of polymer concrete are quite excellent. So polymer concrete is widely expected to be used for structural materials. The hybrid damper is the structural system that consists of steel balls and viscous fluid inside the pipe which is embedded in polymer concrete. It can reduce the structural vibrations through the energy dissipation mechanism of viscous fluid and steel balls. In this study, the physical and dynamic properties of polymer concrete with hybrid damper were compared with ordinary concrete. As a result, the elasticity coefficient and the strength of the polymer concrete with hybrid damper were so much excellent. In particular, the tensile strength was 6.5 to 10 times higher than ordinary concrete. The frequency response function and damping ratio were also compared. As a result, the dynamic Stiffness of the polymer concrete was 25% greater than that of ordinary concrete. The damping ratio of the polymer concrete was approximately 3 times higher than that of ordinary concrete. Although the dynamic stiffness of the hybrid damper showed similar tendency, the damping ratio was 3.5 times higher than that of ordinary concrete. Therefore, the polymer concrete with hybrid damper was superior to ordinary concrete.

Detection of Cavities Behind Concrete Walls Using a Microphone (마이크로폰을 이용한 콘크리트 벽체 배면의 공동 탐사)

  • Kang, Seonghun;Lee, Jong-Sub;Han, WooJin;Kim, Sang Yeob;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.19-28
    • /
    • 2022
  • Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.