• 제목/요약/키워드: Structure vibration

검색결과 4,317건 처리시간 0.03초

오리피스 유체 댐퍼를 이용한 건축 구조물 진동제어의 실험적 연구 (An Experimental Study on the Building Vibration Control Using Orificed Fluid Dampers)

  • 정태영;임채욱;김병현;문석준
    • 한국소음진동공학회논문집
    • /
    • 제12권6호
    • /
    • pp.469-477
    • /
    • 2002
  • An orificed fluid damper(OFD) having the capacity of about 2 tons was designed and fabricated, and series of tests were performed to grasp the fundamental performance characteristics of it. Several important findings were observed and introduced in this paper. It was applied to a 6-story steel structure under random excitation and seismic excitation for the confirmation of its validity on structural vibration absolution. The experimental results demonstrated that the addition of an OFD to the test structure is very effective in reduction of vibration level of the higher modes as well as the fundamental mode. Maxwell model was adopted to describe the frequency-dependent characteristics of the fabricated OFD and the numerical simulation was carried for the test structure. It was confirmed that the experimentally and numerically simulated results agree well.

주기관 고차 관성기진력에 의한 콘테이너선 선루진동의 제어 (Control of Deckhouse Vibration of a Container Ship due to Higher Order Inertial Excitation of Main Engine)

  • 이수목;김원현;정균양
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.876-880
    • /
    • 2000
  • Vibration problem of deckhouse structure in a container vessel was investigated through the analysis and measurement. The natural frequency of deckhouse structure was found to be resonant with main engine 4th order excitations in the operating range, major sources of which were main engine inertial moment and axial thrust of the propulsion shafting system. To investigate and solve the problem, exciter test was performed to identify the vibration chracteristics of the ship structure and mechanical balancer was installed to compensate the 4th order inertial moment. Measurement results under the conditions with and without balancer operating were compared and analyzed to confirm the balancer effect. Good coincidence was found between the measurement and analysis results, which made it possible to predict the vibration problem in the earlier design stage.

  • PDF

지능재료가 부착된 외팔보의 진동모형에 관한 연구 (Studies on the vibration mode of the cantilevered beam with Piezoelectric Element)

  • 차진훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.204-209
    • /
    • 2000
  • It is the first step to establish the exact vibration model of the structure when constructing the smart structure with desired vibration scheme. In this paper, vibration model of beam with piezoelectric element boned on the surface is presented by considering the thickness effect of the bond layer. In contrast to the previous papers which neglect the effect of bond layer, the presented vibration model considers the effect of bond layer assuming the prefect bond condition. The perfect bond condition is tested by comparing the controllability of beams with three types of bond layer. An optimal vibration control of the beam can be performed when there exists perfect-bond condition between the piezoelectric element and the main structure.

  • PDF

750kW 풍력발전기 타워 구조의 진동 특성 (Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator)

  • 김석현;남윤수;은성용
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

Linear oscillatory actuator를 이용한 구조물 진동의 능동 제어 연구 (Application of Linear Oscillatory Actuator to Active Structural Vibration Control)

  • 정태영;문석준;정종안;박희창;장석명
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.311-317
    • /
    • 1997
  • In this paper the active vibration control system using a linear oscillatory actuator(LOA) is studied to suppress structural vibration. In the LOA, the AC-power-energized armature generates a shift field in an air gap, which produces a oscillating force to the mover in the magnetic field generated by high density permanent magnets. LOA has relatively simple structure with almost maintenance free, compared with a hydraulic actuator. Performance test of the active vibration control system using a LOA is carried out on a steel test structure under base excitation. From this test, it is confirmed that the acceleration level of the test structure is drastically reduced near the resonant region.

  • PDF

Robust design of liquid column vibration absorber in seismic vibration mitigation considering random system parameter

  • Debbarma, Rama;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1127-1141
    • /
    • 2015
  • The optimum design of liquid column dampers in seismic vibration control considering system parameter uncertainty is usually performed by minimizing the unconditional response of a structure without any consideration to the variation of damper performance due to uncertainty. However, the system so designed may be sensitive to the variations of input system parameters due to uncertainty. The present study is concerned with robust design optimization (RDO) of liquid column vibration absorber (LCVA) considering random system parameters characterizing the primary structure and ground motion model. The RDO is obtained by minimizing the weighted sum of the mean value of the root mean square displacement of the primary structure as well as its standard deviation. A numerical study elucidates the importance of the RDO procedure for design of LCVA system by comparing the RDO results with the results obtained by the conventional stochastic structural optimization procedure and the unconditional response based optimization.

철도차량에서 사용하는 부유상구조의 진동절연특성에 관한 연구 (Study on the Vibration Reduction Characteristics of Floating Floors Used in Railway Vehicles)

  • 우관제;박희준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.305-309
    • /
    • 2006
  • In this paper vibration reduction characteristics of floating floors used in railway vehicles are studied. Vibration reduction characteristics are compared through a series of tests for elastically-coupled floor and rigidly-coupled floor. It was found that elastically-coupled floor has larger vibration reduction amount than rigidly-coupled floor. Around the fundamental natural frequency, however, elastic floor has poor vibration reduction effect than rigid floor. Measures to reduce structure-borne noise are also discussed based on the test results. Structure-borne noise for running railway vehicles cannot be reduced by an effort to deviate resonance between natural frequency of floors and major exciting forces. Instead, reducing vibration level of top floor and using covers which have low sound radiation coefficient will be effective for reducing structure-borne noise.

  • PDF

Linear Oscillatory Actuator를 이용한 구조물 진동의 능동제어연구 (Application of Linear Oscillatory Actuator to Active Structural Vibration Control)

  • 정태영;문석준;정종안;박희창;장석명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.248-254
    • /
    • 1996
  • In this paper active vibration control system using a linear oscillatory actuator (LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements, so it has lots of merits with respect to economics and maintenance. Performance test of active vibration control system using LOA is carried out on a steel test structure under base excitation. From this test it is confirmed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large to structures will be studied.

  • PDF

750kW 풍력발전기 타워 구조의 진동 특성 (Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator)

  • 김석현;남윤수;은성용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.429-434
    • /
    • 2004
  • Vibration response of the tower structure of a 750kW wind turbine generator is investigated by measurement and analysis. Acceleration response of the tower under various operation condition is monitored in real time by vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the wind turbine tower.

  • PDF

부분구조의 민감도해석을 이용한 버스차체의 진동특성 분석 (Analysis on Vibration Characteristics of Bus Body Structure using Sensitivity Analysis of Component Structures)

  • 김진희;이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.354-357
    • /
    • 2004
  • In this paper, a sensitivity analysis technique is presented for performing effective structural optimization of bus system. Design sensitivities are analyzed on natural frequency of bus substructures using super-element. Vibration modes of substructure, which large affect on the global vibration mode of bus B.I.W., are found through the sensitivity analysis using the chain rule. And design variables, which are determined from the sensitivity analysis, are changed through optimum design.

  • PDF