• Title/Summary/Keyword: Structure of Elements

Search Result 3,658, Processing Time 0.031 seconds

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

Performance Evaluation on Structure-based Retrievals of XML Documents (XML 문서의 구조기반 검색성능 평가)

  • Kim, Su-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.396-406
    • /
    • 2009
  • In extension to our previous study, we develop metadata that specify elements' structural orders, to increase the efficiency level of XML document's retrieval process. Then, we proposed a structure-based indexing model. We expect the model to generate a more efficient retrieval process of horizontally and vertically related elements. To evaluate the model's performance level, we developed an experimental prototype and conducted an experiment on an XML corpus. On average, descendant, ancestor and sibling retrievals were approximately twelve percent faster than the ETID model. And retrievals specifying structural orders of particular element types were approximately twenty-five percent faster than the ETID model. In conclusion, metadata, such as Etype, Asso and Lsso, may make a meaningful contribution to retrieval processes that specify elements' order.

Structure of System Matrix of one Machine System with Controllers (저차모델계통의 계통행렬의 구조)

  • 권세혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1146-1152
    • /
    • 1990
  • Direct calculation algorithm for the nonzero elements of system matrix is suggested for a single machine connected to the infinite bus. Excitation system and power system stabilizer are included. When the system matrix is partitioned into 15 nonzero blocks, we can identify the location of nonzero elements and formula for each element. No matrix inversion and multiplication are necessary. Sensitivity coefficients with respect to controller parameters are suggested based on the structure of system matrix.

UNITS, NILPOTENT ELEMENTS, AND UNIT-IFP RINGS

  • Park, Sangwon;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1389-1396
    • /
    • 2018
  • We observe the structure of a kind of unit-IFP ring that is constructed by Antoine, in relation with units and nilpotent elements. This article concerns the same argument in a more general situation, and study the structure of one-sided zero divisors in such rings. We also provide another kind of unit-IFP ring.

An application of fourier spectral analysis to the analysis of linear dynamic systems coupled with nonlinear elements (비선형 요소가 결합된 선형역학시스템의 해석에의 Fourier 스펙트럼 해석기법의 응용)

  • 성단근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.61-64
    • /
    • 1986
  • The Fourier Spectral Analysis has been widely utilized in the analysis of linear dynamic systems. However, it may not be generaly extended to analyze nonlinear systems. In this paper, a linear underlying dynamic structure coupled with nonlinear elements is analyzed by using newly derived equations of motion after the linear dynamic structure is characterized by the Fourier spectral analysis.

  • PDF

Structural Layout Optimization Strategy Considering Assemblage (조립성을 고려한 위상 최적설계법 개발)

  • Choi Guk-Jin;Kim Myung-Jin;Kim Yoon-Young;Jang Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.512-519
    • /
    • 2006
  • In the ground-structure-based topology optimization, beam elements are regarded to be rigidly connected to each other, and joints are assumed to have infinite stiffness. Thus the optimized topology of a structure is obtained according to the assumption of no joint effect, and the resulting structure should be manufactured in one piece if the joint effect is to be excluded as much as possible. The underlying problems are that 1) the performance of the structure might be seriously decreased if the members of the structure are connected through welding or bolting, not manufactured in one piece, and 2) the topology of the structure will be changed if the joint effect is taken into account. In the paper, the assemblage issue is considered on topology optimization, and a new formulation based on the joint stiffness-varied ground beam structure is developed. Joints of a beam structure are modeled by elastic spring elements whose stiffnesses are controlled by design variables during the optimization.

A Study on the Architectural Structure of Ancient Korean Wooden Buildings - Focused on the Analysis of the Architectural Elements of Stone Pagoads - (한국(韓國) 고대(古代) 대조건축(大造建築) 구조(構造)의 추정(推定)에 관(關)한 연구(硏究) -석탑(石塔)의 건축요소(建築要素) 분석(分析)을 중심(中心)으로-)

  • Park, Jae-pyoung;Lee, Jae-heun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.4 no.1
    • /
    • pp.71-86
    • /
    • 2002
  • This research aims to illustrate the structure of the ancient Korean wooden buildings by a comparative study of the historical resources such as stone remains, wall paintings historiographies and excavations. As stone pagodas are the most typical stone remains, I selected for analysis some stone pagodas which contain architectural elements and results of the study are as follows: 1) The number of stories and structural modes of the base stone part show the wooden architectural aspects: they have one or two stories and their base part is constructed in the mode of assembling rectangular stones. 2) The body of the pagoda contains such architectural elements as pillars, door and windows, crossbeams, balcony, bracket sets. 3) The roof of the stone pagoda contains such architectural elements as eaves, roofs and modes of stone assembling. The results inferred through this research could be of help for further comparative studies with the other secondary materials by providing basic knowledge for it.

  • PDF

A Study for the Expression of Korean Tradition in Interior Design-Focus on Korean restaurant- (실내디자인의 한국전술표현에 관한 연구-한식당을 중심으로-)

  • 김형대
    • Korean Institute of Interior Design Journal
    • /
    • no.6
    • /
    • pp.15-20
    • /
    • 1995
  • In this paper, a strategy for utilizing the Korean tradi-tional spaces and interior design elements in inner space in order to express Korean-style interior design has been studied. Characteristics of Korean tradition was gathered from literatures in two categories; space and el-ements. Space again has been studied in detail in the area of split, continuity, hierarchy, elasticity, dynamics. And study of elements includes floor, wall, ceiling, dan-chung, lattice, laytiles on a roof, rafter, extended eaves, the line of eaves. 30 Korean restaurants were selected, analysed and compared with literature review. Based on the compari-son, a strategy for proper expression and utilization of Korean tradition is suggested. In the process of compari-son, current status of implementation and problems were found. Traditional elements are used in about 50% of Korean restaurants located in hotels, and 25% of those located in department stores. With the survey and other professional's opinions, an implementation plan is suggest-ed as follows; 1. Succession design method of tradition should use main-ly amelioration method and use copy and partly abstraction method. 2. Expression of tradition has to include all of space, ele-ments, and decoration. In space structure, Korean tra-dition space structure must be applied. 3. In order to design with feeling of Korean tradition, various different Korean elements have to be used. 4. In order to express high quality design, high-quality elements has to be used.

  • PDF

Analysis and Comparison of Sorting Algorithms (Insertion, Merge, and Heap) Using Java

  • Khaznah, Alhajri;Wala, Alsinan;Sahar, Almuhaishi;Fatimah, Alhmood;Narjis, AlJumaia;Azza., A.A
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.197-204
    • /
    • 2022
  • Sorting is an important data structure in many applications in the real world. Several sorting algorithms are currently in use for searching and other operations. Sorting algorithms rearrange the elements of an array or list based on the elements' comparison operators. The comparison operator is used in the accurate data structure to establish the new order of elements. This report analyzes and compares the time complexity and running time theoretically and experimentally of insertion, merge, and heap sort algorithms. Java language is used by the NetBeans tool to implement the code of the algorithms. The results show that when dealing with sorted elements, insertion sort has a faster running time than merge and heap algorithms. When it comes to dealing with a large number of elements, it is better to use the merge sort. For the number of comparisons for each algorithm, the insertion sort has the highest number of comparisons.

Effective Structural Joins using Level Information (레벨 정보를 이용한 효과적인 구조 조인 기법)

  • Kim, Jong-Ik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.582-587
    • /
    • 2008
  • Structural join is one of the most typical techniques for evaluating XML path queries. Recent researches for structural joins focus on techniques of skipping unnecessary elements using the horizontal distribution information of elements that is indexed on a structure like B+ tree. However, those techniques make the structural join complicated and cannot guarantee efficient join processing due to the overhead of an index structure. In this paper, we propose a new structural join technique that exploits the level information of XML elements. Our technique can skip unnecessary elements using level information, which is vertical distribution information of elements. Through the experimental results, we show that our technique can evaluate structural joins efficiently.