• Title/Summary/Keyword: Structure and Thermal Properties

Search Result 1,430, Processing Time 0.026 seconds

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminaria japonicus by Thermal Decomposition 5. Effects of Depolymerized Alginate on Body Weight, Organ, Pancreatic and Small Intestinal Composition, and Small Intestinal Microvilli Structure in Rats (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리$\cdot$화학적 및 생물학적 특성에 관한 연구 5. 랫드의 체중, 장기, 췌장과 소장의 성분 및 소장융모의 미세구조에 미치는 저분자 Alginate의 영향)

  • KIM Yuck-Yong;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • To examine functionality of depolymerized alginate obtained by hydrolysis of alginate through a heating process at $121^{\circ}C$ on gastrointestinal physiology, the changes of body weight, organ weight and length, pancreatic and small intestinal composition, and light microscopy (LM) observation of small intestinal microvilli's appearances were checked in the rats. Rats were fed diets containing $1\%, 5\%, and 10\%$ of each depolymerized alginate (HAG-10, HAG-50, HAG-100) and alginate for 35 days, The feeding of 5 and $10\%$ HAG-50 and $10\%$ alginate diets for 35 days significantly depressed the body weight gain, but increased the length and weight of the small intestine and cecum in rats (p<0.01). Pancreatic protease activity was decreased significantly (p<0.01) in all groups except lo/o of HAG-10 diets, but the protein content increased in all groups, However, pancreatic amylase and lipase activities as well as DNA and RNA content were not significantly different. The small intestinal protein and the DNA content were the highest in diets fed $5\%$ HAG-50; RNA content increased significantly (p<0.01) in all groups except in the fiber-free diets. Light microscopy (LM) observation showed growth of small intestinal microvilli with numerous ridges; the multiplication of the convolution goblet cells in rats fed with diets containing $5\%$ of HAG-50 were more than others group.

  • PDF

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF

EFFECT OF CAVITY DIVERGENCY ON CEMENT THICKNESS AND BOND STRENGTH OF RESIN INLAY (와벽 이개도가 레진 인레이의 시멘트 두께 및 접착 강도에 미치는 영향)

  • Cha, Yoon-Seog;Cho, Yong-Bum;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.619-627
    • /
    • 1996
  • There are increasing use of composite resin in the posterior teeth and the new indirect inlay technique was introduced for compensating much troubles faced in direct technique. Many researchers insisted that overall properties of restorative materials were enhanced by an additional curing but this technique still has a problems about using cement material. Resin inlay obtains retention force from friction and another adhesion to tooth structure. A shape of cavity preparation was noted but studies about cement thickness and bond strength with cavity divergency are rare. The purpose of this study is to assess the effect of cavity divergency on cement thickness and bond strength of resin inlay. Cavities, which divergency was $6^{\circ}$, $16^{\circ}$, and $26^{\circ}$ in each group, were prepared and their divergency was verified by Adobe Photoshop program through the image capture with stereo microscope and FlexCam. Inlays were fixed into the cavities with a resin cement, Superbond and were handled under chemical (in 75% ethanol for 24 hrs.) and thermal stress (500 cycles from $5^{\circ}$ to $55^{\circ}C$). MXT 70 (x400) was used for measuring the cement thickness and bond strength was evaluated with a universal testing machine. Following results were obtained : 1. The cement thickness in Mean (S.D.) were; 35.58 (10.31)${\mu}m$ in $6^{\circ}$ group, 35.97 (10.49)${\mu}m$ in $16^{\circ}$ group, and 41.43 (9.33)${\mu}m$ in $26^{\circ}$ group. But there was no significant difference between groups. 2. The bond strength in Mean (S.D.) were ; 33.18 (5.53)kg in $6^{\circ}$ group, 23.47 (13.40)kg in $16^{\circ}$ group, and 19.75 (10.48)kg in $26^{\circ}$ group. $6^{\circ}$ group showed significantly higher value compared to $16^{\circ}$ and $26^{\circ}$ groups (p<0.05). Although the results of this study indicate $6^{\circ}$ divergency will be good for resin inlay, cavity preparation with this type will have lots of difficulties in manufacturing, try-in, and cementation procedures, such as deformation. So it is concluded that $16^{\circ}$ divergent cavity preparation is recommended in resin inlay technique.

  • PDF

Synthesis and Characterization of IPA-co-HDO-co-(TPA/MA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 IPA-co-HDO-co-(TPA/MA) 음이온교환막의 합성 및 특성)

  • Jung, Jae-Chul;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.593-598
    • /
    • 2011
  • The IPA-co-HDO-co-(TPA/MA) copolymers for all-vanadium redox flow battery were synthesized by melt condensation polymerization using isophthalic acid(IPA), 1,6-hexandiol (HDO), terephthalic acid(TPA) and maleic anhydride(MA). The amination of chloromethylated IPA-co- HDO-co-(TPA/MA)(CIHTM) copolymer was carried out using trimethylamine, and the anion exchange membrane was also prepared by UV crosslinking reaction. The structure and thermal stability of IHTM copolymers were confirmed by FTIR, $^1H$ NMR, and TGA analysis. The anion membrane properties such as water uptake, ion exchange capacity, electric resistance and electrical conductivity, were measured by gravimetry, titration and LCR meter. The efficiency of the all-vanadium redox flow battery was analyzed. The ion exchange capacity, electric resistance and electrical conductivity were 1.10 meq/g, $1.98{\Omega}{\cdot}cm^2$, and 0.009 S/cm, respectively. The efficiency of charge-discharge, voltage, and energy for the allvanadium redox flow battery were 96.5, 74.6, 70.0%, respectively.

Residual Stress Behavior of PMDA/6FDA-PDA Copolyimide Thin Films (PMDA/6FDA-PDA 공중합 폴리이미드의 잔류응력 거동)

  • Jang, Won Bong;Chung, Hyun Soo;Joe, Yungil;Han, Haksoo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1014-1019
    • /
    • 1999
  • Copolyamic acid PMDA/6FDA-PDA(PAA) and homopolyamic acids PMDA-PDA(PAA) and 6FDA-PDA(PAA) were synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride(PMDA) and 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA) as the dianhydride and 1,4-phenylenediamine (PDA) as the diamine. Residual stresses were detected in-situ during thermal imidization of the co- and homopolyimide precursors as a function of processing temperature over the range of $25{\sim}400^{\circ}C$ using thin film stress analyzer(TFSA), and morphological structures were investigated by WAXD. In comparison, the resultant residual stress of polyimide films composed of different compositions decreased with the increasing content of PMDA unit in the chain and was about 5 Mpa in compression mode for PMDA-PDA. In this study, the synthesis of random PMDA/6FDA-PDA copolyimide could be completed and compensate for the difficulty of process due to high $T_g$ of PMDA-PDA and relatively higher stress of 6FDA-PDA. It showed that we can make a low level stress copolyimied having excellent mechanical properties by incorporating appropriate rod-like rigid structure PMDA-PDA unit into 6FDA-PDA polyimide backbone which generally shows higher stress due to rotational hinges such as bulky di(trifluoromethyl). Specially, PMDA/6FDA-PDA(0.9:0.1:1.0) satisfied excellent mechanical property and low level stress as an inter layer showing low dielectric constant.

  • PDF

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

Growth of Ga2O3 films on 4H-SiC substrates by metal organic chemical vapor deposition and their characteristics depend on crystal phase (유기 금속 화학 증착법(MOCVD)으로 4H-SiC 기판에 성장한 Ga2O3 박막과 결정 상에 따른 특성)

  • Kim, So Yoon;Lee, Jung Bok;Ahn, Hyung Soo;Kim, Kyung Hwa;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.149-153
    • /
    • 2021
  • ε-Ga2O3 thin films were grown on 4H-SiC substrates by metal organic chemical vapor deposition (MOCVD) and crystalline quality were evaluated depend on growth conditions. It was found that the best conditions of the ε-Ga2O3 were grown at a growth temperature of 665℃ and an oxygen flow rate of 200 sccm. Two-dimensional growth was completed after the merge of hexagonal nuclei, and the arrangement direction of hexagonal nuclei was closely related to the crystal direction of the substrate. However, it was confirmed that crystal structure of the ε-Ga2O3 had an orthorhombic rather than hexagonal. Crystal phase transformation was performed by thermal treatment. And a β-Ga2O3 thin film was grown directly on 4H-SiC for the comparison to the phase transformed β-Ga2O3 thin film. The phase transformed β-Ga2O3 film showed better crystal quality than directly grown one.

Development and Self-Healing Performance of Epoxy Based on Disulfide (이황화 결합을 기반으로 한 자가치유 에폭시 개발 및 자가치유 성능 평가)

  • Donghyeon Lee;Seong Baek Yang;Jong-Hyun Kim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.337-342
    • /
    • 2024
  • Thermosetting composite materials are applied in mobility and structural applications due to their high mechanical strength and thermal properties. Nevertheless, these materials are difficult to recycle or reprocess. Therefore, research is currently underway to introduce vitrimer as a solution to this challenge. In this study, to enable reprocessing and self-healing of structural epoxy, an epoxy containing disulfide bonds was synthesized and added. The addition of disulfide epoxy resulted in a decrease in tensile strength and Young's modulus, but an increase in tensile strain. Analysis of the fracture surface after tensile testing revealed that the addition of disulfide epoxy imparted characteristics of ductile materials. This is attributed to the structure of disulfide epoxy, which primarily involves alkyl chains and bond exchange occurring at the disulfide bonds. It was confirmed that the addition of disulfide epoxy enables self-healing through reprocessing. While reprocessing was not possible with disulfide epoxy content below 17 wt%, it was feasible up to four times with content above 0.25 wt%. This study is expected to contribute to extending the lifespan of structural composites and enhancing recycling possibilities through reprocessing.

Selective Oxidation of Acrolein over Cupric Salt of 12-Molybdophosphoric Acid (12-몰리브도 인산 동염 촉매상에서 아크롤레인의 선택 산화반응)

  • Kim, Kyung-Hoon;Na, Suk-Eun;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.721-730
    • /
    • 1993
  • Various catalysts of $Cu_xH_3-{_{2x}}PMo_{12}O_{40}{\cdot}_nH_2O$ with different x-values have been prepared and characterized by thermal analysis, X-ray powder diffraction, infrared spectroscopy, BET surface-area measurement, electron microscopy, and temperature programmed desorption of ammonia. The properties of these catalysts in acrolein oxidation have been investigated in a continuous-flow fixed-bed reactor. The catalysts lost their water of crystallization at about $200^{\circ}C$ and their constitutional water between 300 and $400^{\circ}C$. The Keggin structure of the catalysts was identified by infrared spectroscopy. The decomposition of Keggin anion, $(PMo_{12}O_{40})^{3-}$, was increased with the increase of substituted copper content and identifiable $MoO_3$ and $P_2O_5$ as decomposition products were observed. The conversion of acrolein decreased with the increase of x probably due to the decrease of specific surface area and of total amount of acid sites. But specific reaction rate and selectivity to acrylic acid were maximized at x=1.0, and it showed specific acid site distributions.

  • PDF

The Study on Phase Separation Development by Curing Reaction Rate for Unsaturated Polyester/Polyvinylacetate Semi-IPN (Unsaturated Polyester/Polyvinylacetate Semi-IPN의 경화반응속도에 따른 상분리현상 연구)

  • Chang, Won-Young;Kim, Moo-Sool;Kim, Jin-Hwan;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.78-89
    • /
    • 2001
  • Morphological changes of unsaturated polyester/polyvinylacetate semi-IPN were studied while the phase separation and the cure reaction occurred in a competing fashion. The light scattering and thermal analysis techniques were used to investigate the phase separation rates and mechanical properties resultantly induced by molecular diffusion of thermoplastic polymer during the curing process of thermosetting polymer. The reaction activation energy was calculated by using Flynn-Wall method and the semi-IPN structure exhibited various phase-separation morphological characteristics. When PVAc composition was 10 wt%, the phase separation was not observed during the curing reaction, but the phase separation occurred in a similar fashion to nucleation and growth(NG) mechanism at room temperature. On the other hand, when PVAc composition was over 11.65 wt%, the phase separation was generated in the middle of the curing process. Consequently, the phase separation seemed to influence the curing reaction rate, which was also supported by the changing activation energy with conversion and PVAc composition. Finally, the total scattered intensity was measured at various temperature, and subsequently the diffusion rates of phase separation R(${\beta}m$) were evaluated.

  • PDF