• Title/Summary/Keyword: Structure actuator

Search Result 709, Processing Time 0.028 seconds

Vibration Control of Hvbrid Smart Structure Using PZT Patches and ER Fluids (PZT와 ER유체를 적용한 복합지능구조물의 진동제어)

  • Yun, Shin-Il;Park, Keun-Hyo;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.734-739
    • /
    • 2003
  • Many types of smart materials and control laws are available to actively adjust the structure from various external disturbances. Usually, a certain type of control laws to activate a specific smart material is well established, but the effectiveness of the control scheme is limited by the choice of the smart materials and the responses of the structure. ER fluid is adequate to provide relatively large control force, on the other hand, the PZT patches are suitable to provide small but arbitrary control forces at any point along the structure. It was found that active vibration control mechanism using ER fluid failed to suppress the excitation off the resonant frequency with changed structural characteristics along the frequency response function of the closed loop of the control system. To compensate this additional peak of the closed loop system, PPF control using PZT as an actuator is added to construct a hybrid controller.

  • PDF

A HDD Latch Design Using Electro-magnetic Force of VCM Actuators (VCM 액추에이터의 전자기력을 이용한 HDD 래치 설계)

  • Kim, Kyung-Ho;Oh, Dong-Ho;Shin, Bu-Hyun;Lee, Seung-Yop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.788-794
    • /
    • 2009
  • Various types of latch designs for hard disk drives using load/unload mechanism have been introduced to protect undesired release motions of a voice coil motor(VCM) actuator from sudden disturbances. Recently, various inertia-type latches have been widely used because locking performance is better than that of other types of latch. However there has been a limit in the inertia type in order to guarantee perfect latch and unlatch operations because of changes in latch/unlatch conditions due to mechanical tolerance and temperature-dependent friction. In this paper, a reliable and robust magnetic latch mechanism is proposed through only simple modifications of coil and yoke shapes in order to overcome the mechanical limit of current inertia-type latches. This new magnetic latch does not have only a simple structure but it also ensures reliable operations and anti-shock performance. The operating mechanism of the proposed latch is theoretically analyzed and optimally designed using an electromagnetic simulation.

Vibration analysis of characteristics and valveless Type Piezoelectric micro-pump (VALVELSS 압전펌프 진동 해석 및 특성)

  • Lim, Jong-Nam;Oh, Jin-Heon;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.185-185
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump the highest pressure level of 83.4kHz.

  • PDF

Trajectory Tracking Control of a Real Redundant Manipulator of the SCARA Type

  • Urrea, Claudio;Kern, John
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.215-226
    • /
    • 2016
  • Modeling, control and implementation of a real redundant robot with five Degrees Freedom (DOF) of the SCARA (Selective Compliant Assembly Robot Arm) manipulator type is presented. Through geometric methods and structural and functional considerations, the inverse kinematics for redundant robot can be obtained. By means of a modification of the classical sliding mode control law through a hyperbolic function, we get a new algorithm which enables reducing the chattering effect of the real actuators, which together with the learning and adaptive controllers, is applied to the model and to the real robot. A simulation environment including the actuator dynamics is elaborated. A 5 DOF robot, a communication interface and a signal conditioning circuit are designed and implemented for feedback. Three control laws are executed in: a simulation structure (together with the dynamic model of the SCARA type redundant manipulator and the actuator dynamics) and a real redundant manipulator of the SCARA type carried out using MatLab/Simulink programming tools. The results, obtained through simulation and implementation, were represented by comparative curves and RMS indices of the joint errors, and they showed that the redundant manipulator, both in the simulation and the implementation, followed the test trajectory with less pronounced maximum errors using the adaptive controller than the other controllers, with more homogeneous motions of the manipulator.

Design of Ultra-light Robot-arm Capable of Carrying Heavy Weight (고중량 이송 가능한 초경량 로봇 팔의 설계)

  • Choi, Hyeung-Sik;Cho, Jong-Rae;Leem, Kun-Wha;Lee, Jong-Hoon;Kim, Young-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.343-350
    • /
    • 2008
  • In this paper, a six degree-of-freedom robot arm which is very light but capable of delivering heavy loads was studied. The proposed robot arm has much higher load capacity than conventional robot arms actuated by motors with speed reducers such as the harmonic drive since a new type of robot actuator based on a closed chain mechanism driven by the ball screw was adopted. Analysis on the design scheme and on the mechanism of the joint actuator of the robot arm were made. Since the robot arm was designed very light, it has deflection in the links. To analyze this, a finite element analysis on the structure of the designed robot links was made using ANSYS software. Verifying experiments on the performance of high load capacity of the robot arm was performed by loading heavy weights on the robot arm. Through experiments. the correctness of the numerical analysis was also verified.

Experimental Study of the Robot Arm Applying the Gravity Compensator (중력보상기를 적용한 로봇 팔의 실험적 연구)

  • Choi, Hyeung-Sik;Seo, Hae-Yong;Uhm, Tai-Woong;Yoon, Jong-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.60-67
    • /
    • 2011
  • In this paper, the structure of a gravity compensator(GC) was studied, and the 6-axis robot manipulator which is newly developed by applying the GC is presented to improve the torque performance and repeatability error of the robot joint. The kinematics analysis on the robot was presented. Also, experiments of the performance of the joint actuator of robot adopting the gravity compensator were presented by the GC to $1^{st}$ and $2^{nd}$ joints of the robot arm. According to the experiment results, it was validated that the position errors and load torque of the robot joint actuator adopting the GC are reduced significantly.

Neural Network based Three Axis Satellite Attitude Control using only Magnetic Torquers

  • Sivaprakash, N.;Shanmugam, J.;Natarajan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1641-1644
    • /
    • 2005
  • Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.

  • PDF

Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy

  • Nam, Hyo-Jin;Kim, Young-Sik;Cho, Seong-Moon;Lee, Caroline-Sunyong;Bu, Jong-Uk;Hong, Jae-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.246-252
    • /
    • 2002
  • Two kinds of PZT cantilevers integrated with a piezoresistor have been newly designed, fabricated, and characterized for high speed AFM. In first cantilever, a piezoresistor is used to sense atomic force acting on tip, while in second cantilever, a piezoresistor is integrated to calibrate hysteresis and creep phenomena of the PZT cantilever. The fabricated PZT cantilevers provide high tip displacement of $0.55\mu\textrm{m}/V$ and high resonant frequency of 73 KHz. A new cantilever structure has been designed to prevent electrical coupling between sensor and PZT actuator and the proposed cantilever shows 5 times lower coupling voltage than that of the previous cantilever. The fabricated PZT cantilever shows a crisp scanned image at 1mm/sec, while the conventional piezo-tube scanner shows blurred image even at $180\mu\textrm{m}/sec$. The non-linear properties of the PZT actuator are also well calibrated using the piezoresistive sensor for calibration.

Optimal Design and Control of xy${\theta}$ Fine Stage in Lithography System (리소그라피 장비에서 xy${\theta}$미세구동기의 최적 설계 및 제어)

  • 김동민;김기현;이성규;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.163-170
    • /
    • 2002
  • The quality of a precision product, in general, relies on the accuracy and precision of its manufacturing and inspection process. In many cases, the level of precision in the manufacturing and inspection system is also dependent on the positioning capability of tool with respect to the work piece in the process. Recently the positioning accuracy level has reached to the level of submicron and long range of motion is required. For example, for 1 GDARM lithography, 20nm accuracy and 300mm stroke needs. This paper refers to the lithography stage especially to fine stage. In this study, for long stroke and high accuracy, the dual servo system is proposed. For the coarse actuator, LDM (Linear DC Motor) is used and for fine one VCM is used. In this study, we propose the new structure of VCM for the fine actuator. It is 3 axis precision positioning stage for an aligner system. After we perform the optimal design of the stage to obtain the maximum force, which is related to the acceleration of the stage to accomplish throughput of product. And we controlled this fine stage with TDC. So we obtained 50nm resolution. So later more works will be done to obtain better accuracy.

Design and Analysis of Ball Screw-driven Robotic Gripper (볼 나사 구동형 로봇 그리퍼 설계 및 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • This paper presents a ball screw-driven robotic gripper mechanism which is possible to grasp an object and analyzes its kinematic feature for grasping by simulation. For the purpose of identifying the feature of the robot gripper, we try to confirm the kinematics relating the joint space of the driving actuator to the gripper's tip space. To be specific, the proposed robot gripper employs one actuator and a symmetrical closed-chain structure. As a result, the specified robot gripper has an advantage of robustness to external forces structurally, and it is easy to implement simple grasping operations. Also the gripper has a useful squeezing effect for power grasping.