• 제목/요약/키워드: Structure actuator

검색결과 709건 처리시간 0.033초

Vibration Control of Beam using Distributed PVDF Sensor and PZT Actuator (분포형 압전필름 감지기와 압전세라믹 작동기를 이용한 보의 진동 제어)

  • 유정규;박근영;김승조
    • Journal of KSNVE
    • /
    • 제7권6호
    • /
    • pp.967-974
    • /
    • 1997
  • Distributed piezoeletric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF have been used in this study, the former as an actuator and the latter as a sensor for the integrated structure. We have optimized the position and the size of the PZT actuator and the electrode shape of the PVDF sensor. Finite element method is used to model the structure and the optimized actuators, we have designed the active electrode width of the PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Model control forces for the residual (uncontrolled) modes have been minimized during the sensor design to minimize the observation spill-over. Genetic algorithm and sequential quadratic programming technique have been utilized as an optimization scheme. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Design, Fabrication and Test of Piezoelectric Actuator Using U-Shape PZT Strips and Lever Structure for Lateral Stroke Amplification (수평방향 변위증폭을 위해 U-형상의 PZT 스트립과 지렛대 구조를 이용한 압전구동형 액추에이터의 설계, 제작 및 실험)

  • 이준형;이택민;최두선;황경현;서영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제28권12호
    • /
    • pp.1937-1941
    • /
    • 2004
  • We present lateral actuated piezoelectric actuator using U-shaped PZT strip and lever structure for the RF switch application. In the previous study of RF switch, they used horizontal contact switch fabricated by thin film metals. However, thin film metals could not generate large contact force due to low stiffness. In this work, we suggest lateral contact switch which makes large contact force by increasing stiffness. In addition, we use PZT actuator for the high force actuation. Generally actuator using thin film PZT moves to the vertical direction due to the neutral axis shift. Therefore we need lateral motion generation mechanism based on the thin film PZT actuator. In order to increase lateral motion of thin film PZT actuator, we use U-shaped PZT actuator using residual stress control. Also, thin film PZT actuator can generate very small lateral motion of 120${\times}$10$^{-6}$ ${\mu}{\textrm}{m}$/V for d$_{31}$ mode, thus we suggest lever structure to increase stroke amplification. From the experimental study, fabricated PZT actuator shows maximum lateral displacement of 1 ${\mu}{\textrm}{m}$, and break down voltage of the thin film PZT actuator is above 16V.

Development of Active Control System for Structural Vibration Using a Hydraulic Actuator (유압식 Actuator를 이용한 구조물 진동의 능동제어시스템 개발)

  • S.J. Moon;T.Y. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제32권1호
    • /
    • pp.94-102
    • /
    • 1995
  • The active control system of structural vibration using a hydraulic actuator is developed. The developed system consists of three parts : a hydraulic unit, an actuator unit and a control unit. Structural vibration is sensored by the accelerometer attached to the structure and reduced by the optimally controlled motion of active mass giving anti-phase inertia force to the structure. It is experimentally confirmed that the vibration level of model structure is reduced to about 1/6 by the developed active control system.

  • PDF

Design of a micro fluid actuator driven by electromagnetic force (전자기력을 이용한 마이크로 유체구동기의 설계)

  • Kim D.H.;Kim K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1988-1991
    • /
    • 2005
  • A micro fluid actuator driven by electromagnetic force at MEMS(Micro Electro Mechanical System) level has been designed. The operation of the actuator was simulated in three steps. First, fluid flow analysis has been performed to determine the actuator load. With the load, dynamic behavior of the actuator structure has been analysed. Finally, fluid-structure interaction analysis has been performed to predict the performance of the actuator. To avoid excessive amount of computation, axisymmetric and plane strain 2-D models were used.

  • PDF

Vibration control of a framed structure by an air-pulse actuator

  • Fujimoto, T.;Fengying, Cao;Mori, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.152.3-152
    • /
    • 2001
  • This paper describes an application of an air-pulse actuator for vibration control of a framed structure. Dynamic characteristics of the prototype actuator that utilizes an air-jet reaction force pulsated by an electromagnetic valve were investigated to use it as a control actuator. Using a control law based on the sliding mode control theory, experiments of the vibration control were carried out. The experimental results verified the validity of the actuator performance.

  • PDF

Study on the Piezoelectric Bender Actuator for Small Walking Robots

  • Park, Min Ho;Park, Jong Man;Song, Chi Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제33권4호
    • /
    • pp.276-280
    • /
    • 2020
  • A linear piezoelectric actuator that utilizes the elliptical motion of the two tips of the actuator is proposed. This device is easy to fabricate owing to its simple structure, consisting of three piezo ceramic benders and is suitable for use in micro robotic applications. A π-shaped structure, which was composed of four piezo ceramic benders, was constructed. Two of the benders were positioned on the center of the actuator, and the joints were attached at the ends of the cantilever. The other two benders were positioned on the side of the actuator and were attached between the joint and the tips. The actuator structure was designed to obtain the first bending mode of the horizontal vibration and the vertical vibration at the same frequency, resulting in elliptical motions at the tips. When two sinusoidal wave voltages with a 90-degree phase difference were applied to the two pairs of the actuator benders, elliptical motions were obtained at the tips. The driving characteristics of the prototype actuator were then measured using a laser doppler vibrometer.

A HIGH-ASPECT-RADIO COME ACTUATOR USING UV-LIGA SURFACE MICROMACHINING AND (110) SILICON BULK MICORMACHINING (UV-LIGA 표면 미세 가공 기술과 (110) 실리콘 몸체 미세 가공 기술을 이용한 큰 종횡비의 빗모양 구동기 제작에 관한 연구)

  • Kim, Seong-Hyeok;Lee, Sang-Hun;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제49권2호
    • /
    • pp.132-139
    • /
    • 2000
  • This paper reports a novel micromachining process based on UV-LIGA process and (110) silicon anisotropic etching for fabrication of a high-aspect-ratio comb actuator. The comb electrodes are fabricated by (110) SILICON comb structure considering the etch-rate-ratio between (110) and (111) planes and lateral etch rate of a beam-type structure. The fabricated structure was$ 400\mum \; thick\; and\; 18\mum$ wide comb electrodes separated by $7\mim$ so that the height-gap ratio was about 57. Also considering resonant frequency of the comb actuator and the frequency-matching between sensing and driving mode for gyroscope application, we designed the number, width, height and length of the spring structures. Electroplated gold springs on both sides of the seismic mass were $15\mum\; wide,\; 14\mum\; thick\; and \; 500\mum$ long. The fabricated comb actuator had resonant frequency ay 1430Hz, which was calculated to be 1441Hz. The proposed fabrication process can be applicable to the fabrication of a high-aspect-ratio comb actuator for a large displacement actuator and precision sensors. Moreover, this combined process enables to fabricate a more complex structure which cannot be fabricate only by surface or bulk micromachining.

  • PDF

Optimal Design of Disk Shaped Piezoelectric Actuator and Sensor for Noise Control of Plate Structure (판 구조물의 소음 제어를 위한 압전가진기와 감지기의 최적 설계)

  • 김재환;고범진;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.266-271
    • /
    • 1996
  • Optimal design of disk shaped piezoelectric actuator and sensor mounted on the plate structure is studied for the control of noise radiated fro the structure. The sensor signal is returned to the actuator through negative gain. Finite element modelling is used for the plate structure and the disk shaped piezoelectric sensor and actuator. The objective function is the total radiated sound power and the design variables are the locations and sizes of the piezoelectric actuator and sensor. The optimal is performed at the resonance and the off resonance frequency and the results show good noise reduction.

  • PDF

Non-contact type AFM using frequency separation scheme (주파수응답 분리방법을 이용한 비접촉식 AFM)

  • 이성규;염우섭;박기환;송기봉;김준호;김은경;박강호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 2002
  • In this paper, the frequency response separation scheme is proposed for high scanning speed and simple structure of non-contact type of AFM. A self-sensing cantilever is attached on the actuator for detect the atomic force between tip and the media surface. VCM or PZT are used for actuator. This paper presents the method to simplify the actuator structure and the performance of each actuator for non-contact type AFM. Based on the frequency response separation scheme, the only one actuator plays roles 1311owing low frequency surface and modulating self-sensing cantilever tip in contrast with convention non-contact type AFM. 10 ${\mu}{\textrm}{m}$ standard grid sample imaged to verify proposed scheme. This result shows the possibility simplifying the actuator structure and reducing cost of non-contact type AFM.

  • PDF

Design of A Plane Multi-DOF Actuator (평면 다자유도 액추에이터 설계)

  • Bach, Du-Jin;Kim, Ha-Yong;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.490-493
    • /
    • 2004
  • A 3-DOF actuator which has new principle and very simple structure is proposed. Its principle seems to be similar to conventional electromagnetic actuators, that is, to utilize the relation of control and bias fluxes produced by coils and permanent magnets, respectively, but the coils and permanent magnets of the proposed actuator are fixed in the stator. Such a structure helps to optimally design the actuator for its use. Some experimental and FEM analysis results show the feasibility of the proposed actuator and some characteristics of system that are useful lot structure design and control.

  • PDF