• Title/Summary/Keyword: Structure Test

Search Result 8,609, Processing Time 0.034 seconds

Model test method for dynamic responses of bridge towers subjected to waves

  • Chengxun Wei;Songze Yu;Jiang Du;Wenjing Wang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.705-714
    • /
    • 2023
  • In order to establish a dynamic model test method of bridge pylons subjected to ocean waves, the similarity method of hydroelastic model test for bridge pylons were analyzed systematically, and a model design and production method was proposed. Using this method, a dynamic test model of a bridge pylon was made, and then a free vibration test on the model structure and a dynamic response test of the model structure under wave actions were conducted in a wave flume. The results of the free vibration test show that the primary natural frequencies of the structure by the model test are close to the design frequencies of the prototype structure, indicating that the dynamic characteristics of the bridge pylon are well simulated by the model structure. The results of the dynamic response test show that wave induced base shear forces and motion responses on the model structure are consistent with the numerical results of the prototype structure. The model test results confirm that the proposed model test design method is feasible and applicable. It has application and reference significances for model testing studies of such marine bridge structures.

Modal Test of Missile Structure with Live Warhead and Propellant (활성탄 전기체 동특성 시험기법 연구)

  • Kang, Hwi-Won;Jeon, Byoung-Hee;Yang, Myung-Seog
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.57-60
    • /
    • 2005
  • Modal parameters of a structure are the important factor to control the missile maneuver. In general, a dummy structure is used for the modal test of missile structure instead of the real warhead and propellant because there may be the danger of a explosion by the electric shock of test equipment, such as the exciter and the power amplifier. However, the modal testing of a real missile structure is required to acquire the modal parameters and to analyze the missile performance accurately. The new test system and technique are developed to get rid of the danger and secure the safety during the testing. This test system is made of with the computer network system and controlled remote from test site. Using His new test system, the modal test of real missile structure is performed successfully and its validity is proven.

  • PDF

Comparison of finite element analysis with wind tunnel test on stability of a container crane (컨테이너 크레인의 안정성에 대한 풍동실험과 유한요소해석의 비교)

  • Han, D.S.;Lee, S.W.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2008
  • This study is conducted to provide the proper analysis method to evaluate the stability of a container crane under wind load. Two analysis method, namely structure analysis and fluid-structure interaction, are adopted to evaluate the stability of a container crane in this investigation. To evaluate the effect of wind load on the stability of the crane, 50-ton class container crane widely used in container terminals is adopted for analysis model and 19-values are considered for wind direction as design parameter. We conduct structure analysis and fluid-structure interaction for a container crane with respect to the wind direction using ANSYS and CFX. Then we compare the uplift forces yielded from two analysis with it yielded from wind tunnel test. The results are as follows: 1) A correlation coefficient between structure analysis and wind tunnel test is lower than 0.65(as $0.29{\sim}0.57$), but between fluid-structure interaction and wind tunnel test is higher than 0.65(as $0.78{\sim}0.86$). 2) There is low correlation between structure analysis and wind tunnel test but very high correlation between fluid-structure interaction and wind tunnel test.

  • PDF

Natural Vibration Period of Small-scaled Arch Structure by Shaking Table Test (진동대실험을 통한 축소 아치구조물의 고유진동주기 분석)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2015
  • Large spatial structures can not easily predict the dynamic behavior due to the lack of construction and design practices. The spatial structures are generally analyzed through the numerical simulation and experimental test in order to investigate the seismic response of large spatial structures. In the case of analysis for seismic response of large spatial structure, the many studies by the numerical analysis was carried out, researches by the shaking table test are very rare. In this study, a shaking table test of a small-scale arch structure was conducted and the dynamic characteristics of arch structure are analyzed. And the dynamic characteristics of arch structures are investigated according to the various column cross-section and length. It is found that the natural vibration periods of the small-scaled arch structure that have large column stiffness are very similar to the natural vibration period of the non-column arch structure. And in case of arch structure with large column stiffness, primary natural frequency period by numerical analysis is very similar to the primary natural frequency period of by shaking table test. These are because the dynamic characteristics of the roof structure are affected by the column stiffness of the spatial structure.

Structural Strength Evaluation of a Carbody by Finite Element Analysis and Tests (구조해석 및 시험에 의한 경량화 차체 구조강도 평가)

  • Yoon S.C.;Kim W.K.;Jun C.S.;Kim M.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.49-54
    • /
    • 2005
  • This paper describes the result of structure analysis and load test of body structure. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. Body structure consist of side frame, under frame, roof frame, end frame. Both FEM analysis and load test are based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000' and reference code is JIS E 7105. The test results have been very safety and stable fer design load conditions.

  • PDF

Test Method with TSS in Bluetooth Baseband (블루투스 베이스밴드의 Test Suite Structure에 의한 테스트 방안)

  • Moon, Sang-ook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.997-999
    • /
    • 2005
  • In order for efficient Bluetooth Baseband functional test, Bluetooth SIG (Special Interest Group) provides with Test Suite Structure (TSS) in the Bluetooth specification version 1.1. Bluetooth Baseband hardware which needs to be authenticated should implement the test specification defined in the TSS part I.1 through I.3. In this paper, we discuss the method to verify and test a Bluetooth Baseband implementation based on the TSS version 1.0. Also, we describe various senario and implementation possibilities to perform the Bluetooth Baseband authentication test.

  • PDF

Application of Area-Saving RF Test Structure on Mobility Extraction

  • Lee, Jae-Hong;Kim, Jun-Soo;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • An RF test structure is proposed and its applicability is confirmed by measuring DC characteristics and high frequency characteristics. Effective mobility extraction is also performed to confirm the validity of proposed test structure. The area of suggested test structure consumed on wafer was decreased by more than 50% and its characteristics do not be degraded compared with conventional structure.

Structure Analysis and Loading Test of Body Structure having Aluminum (알루미늄 구조체의 구조해석 및 하중시험)

  • Yoon Sung-Cheol;Kim Won-kyung;Hong Yung-Ki;Pyun Jang-Sik
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.59-64
    • /
    • 2003
  • This paper describes the result of structure analysis and load test of body structure. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. This strength test is based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000' and reference code is JIS E 7105

  • PDF

Electrical Fire Identification due to Conductor Structure Analysis of Electrical Wires (전선의 도체조직 분석에 의한 전기화재 감식)

  • Park, O-Cheol;Kim, Wang-Kon;Park, Nam-Kyu;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.615-618
    • /
    • 2003
  • To investigate the electrical fire identification due to conductor structure analysis of an electrical wire, we are studied by temperature heating test, over current test, short test and electric molten marks. And metal structure analysis of wire by short, we are found out increase in crystal grain with heating temperature. Structure of specimen at over current 300[%] occurred hardly structure formation and boundary of grain.

  • PDF

The Review of Test cases on the Roof Structure of Railway Vehicles (철도차량 ROOF 구조의 시험 사례 고찰)

  • Kim, Jae-Woong;Park, Young-Hoon;Kim, Jung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.219-224
    • /
    • 2006
  • In this paper, to verify the safety of railway vehicle structure, we describe the test methods of roof structure. The purpose of GM/RT 2100' missile protection article is to minimise the risk of injury which could result from the penetration into a vehicle body by missile such as stones and bricks. we carried out weight drop test on the roof structure in accordance with GM/RT 2100. The test results showed that the penetration did not occer.

  • PDF