• 제목/요약/키워드: Structure Enhancement

검색결과 971건 처리시간 0.023초

Quantitative Analysis of Oligosaccharide Structure of Glycoproteins

  • Chang, Kern-Hee;Tamao Endo;Kim, Jung-How
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권2호
    • /
    • pp.136-140
    • /
    • 2000
  • A sensitive and quantiative method for the structural analysis of oligosaccharide was established for the glycoform analysis of glconproproteins. Inthis study, n-linked oligosaccharides of human IgG and bovine transferin were analyzed for the evaluation of the methydrate moiety ofthe method. Chrbohydrate moiety of glycoprotein was relased by hydrazinolysis and purified by paper chromatography. The oligosaccharides were labeled with a fluorescent bye, 2-aminobenzamide, for the enhancement of detection sensitivity. sialylated (acidic) oligosaccharides were separated from neutral oligosaccharide by employing a strong anion-exchange column(MonoQ) followed by the treatment with sialidase. Enzymatically desiayated fractions and neutral fractions of oligosaccharides were applied to normal-phase HPLC to resolve the peaks according to glucose unit (GU). The structure of separated molecules was further determined by sequential digestion with exoglycosidases. As a result, disialylated biantennary complextype oligosaccharide was found to be a major sugar chain in bovine transferrin (63%). In human IgG, core fucosylated asialobiantennary complex oligosaccharides were dominant. These results coincided well with reported results.

  • PDF

Compact Printed Monopole Antenna With Inverted L-shaped Slot for Dual-band Operations

  • Kwak, Chang-Sub;Lee, Yeong-Min;Lee, Young-Soon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.37-44
    • /
    • 2020
  • In this paper, we proposed a compact printed monopole antenna with an inverted L-shaped slot for dual-band operations. Two operating frequency bands are achieved with the use of an inverted L-shaped slot etched on the radiating strip for bandwidth enhancement and a defected ground structure for return loss improvement in the higher frequency band. The measured results showthat the proposed antenna has impedance bandwidths (S11< -10 dB) of 270 MHz (1.81-2.08 GHz) and 340 MHz (2.36-2.70 GHz), covering the required bandwidths for PCS (1850.5-1989.5 MHz), CDMA 2000 (1850-1990 MHz), TD-SCDMA (1880-2025 MHz) and 2.4 GHz WLAN (2400-2484 MHz). The measured return loss of the proposed antenna has a good value of approximately 27.2 dB at 2.4 GHz WLAN. The antenna's peak gains also have a high value of 1.92 dBi at 2 GHz and 2.12 dBi at 2.45 GHz. The proposed antenna shows omnidirectional radiation patterns over the entire frequency range of interest.

Aluminum Effect as Additive Material in Expanded Graphite/Sand Composite for High Thermal Conductivity

  • Areerob, Yonrapach;Nguyen, Dinh Cung Tien;Dowla, Biswas Md Rokon;Ali, Asghar;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.422-430
    • /
    • 2017
  • Al/expanded graphite was successfully synthesized through a facile method including ultrasonic and heat treatment. In the well-designed three dimensional structure, expanded graphite(EG) works as a conductive matrix to support coated Al particles. The effects of the fabrication parameters on the microstructures and thermal conductivities of these composites were investigated. As a result, it was found that composites with graphite volume fraction of 17.4-69.4 % sintered at $600^{\circ}C$/45MPa exhibit in-plane thermal conductivities of 380-940 W/mK, over 90 % of the predictions by rule of mixture. According to the non-destructive analysis results, the synergistic enhancement was caused by the formation of efficient thermally conductive pathways due to the hybrid of the differently sized EG. The structure integrates the advantages of expanded graphite as a conductive support, preserving the electrode activity and integrity and improving the electrochemical performance.

Bioinspired CuO Hierarchical Nanostructures for Self-cleaning surfaces and SERS substrates

  • 이준영;한재현;이지혜;지승묵;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.130-130
    • /
    • 2016
  • Bioinspired hierarchical nanostructures for self-cleaning s-tnwjurface and SERS substrates are investigated. The multi-level hierarchy is combined with CuO nanowire and additional nanoscale structures. CuO nanowire, which has extremely high aspect ratio, serves as a base structure of multi-level hierarchy and additional flower like structures are placed on the CuO nanowires. Since as-fabricated CuO nanostructures are hydrophilic, the surface is coated with perfluorooctyltrichlorosilane in order to change its wetting property to hydrophobic. While those CuO based nanostructures have a sufficient roughness for superhydrophobic characteristics, hierarchical nanoflowers on nanowire structures lead to a self-cleaning surface. Furthermore, flower like nanostructures provide reentrant curvatures, thus enabling oleophobic property. The surfaces has a repellency even for a tiny droplet (10 nL) of low surface tension liquids (~35 mN/m). On the on hands, nanoflowers provide many number of nanoscale gaps. After a thin layer of silver is deposited on the surface of CuO nanostructures, those nanoscale gaps act as hot-spot for surface enhanced Raman scattering (SERS). To analyze SERS enhancement of the surfaces, Raman shift is measured with varying molar density of 4-Mercaptopyridine from mM to pM. From these results, hierarchical CuO nanostructures are suitable for self-maintenance and cost effective SERS sensing applications.

  • PDF

Blue-green Electroluminescence from Aluminum and ${\alpha}$-pyridoin Complex

  • Kim, Won-Sam;Lee, Burm-Jong;Tuong, Nguyen Manh;Son, Eun-Mi;Yang, Ki-Sung;Kwon, Young-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.605-608
    • /
    • 2004
  • A novel blue-green emitting aluminum complex was developed by employing 8-hydroxyquinoline as co-ligand for enhancement of electron transport and light emission abilities so that the electroluminescent (EL) devices do not need additional electron transport layer. The aluminum complex (PAlQ) of 8-hydroxyquinoline and ${\alpha}$-pyridoin was synthesized The structure of the PAlQ was elucidated by FT-IR, UV-Vis and XPS. The PAlQ complex showed thermal stability up to 350$^{\circ}C$ under nitrogen flow by TGA. The photoluminescence (PL) was measured from solid film of the PAlQ complex on quartz substrate. The EL device was fabricated by the vacuum deposition. The device having the structure of ITO/TPD/PAlQ/Al was studied, where N,N-bis(3-methylphenyl}-N,N'-diphenyl-benzidine (TPD) was used as a hole transporting layer. The EL device emitted a blue-green light.

  • PDF

중간 광전극에 삽입된 산란층에 의한 염료감응 태양전지의 광수집 성능 향상 (Enhancement of the Light Harvesting of Dye-sensitized Solar Cell by Inserting Scattering Layer)

  • 남정규;김범성;이재성
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.305-309
    • /
    • 2009
  • The effect of light scattering layers (400 nm, TiO$_2$ particle) of 4 $\mu$m thickness on the dye-sensitized solar cell has been investigated with a 12 $\mu$m thickness of photo-anode (20 nm, TiO$_2$ particle). Two different structures of scattering layers (separated and back) were applied to investigate the light transmitting behaviors and solar cell properties. The light transmittance and cell efficiency significantly improved with inserting scattering layers. The back scattering layer structure had more effective transmitting behavior, but separated scattering layer (center: 2 $\mu$m, back: 2 $\mu$m) structure (9.83% of efficiency) showing higher efficiency (0.6%), short circuit current density (0.26 mA/cm$^2$) and fill factor (0.02). The inserting separating two scattering layers improved the light harvesting, and relatively thin back scattering layer (2 $\mu$m of thickness) minimized interruption of ion diffusion in liquid electrolyte.

그린카용 인휠 모터의 냉각 성능에 관한 연구 (A Study on Cooling Performance of In-wheel Motor for Green Car)

  • 정정훈;김성철;홍정표
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.61-67
    • /
    • 2012
  • The in-wheel motor used in green car was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, a outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor under the effects of motor speed and heat generation. In order to check the problem of heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). Also, the thermo-flow characteristics analysis of in-wheel motor for vehicles was performed in consideration of ram air effect. Therefore, we checked the feasibility of the air cooling for the housing geometry having cooling grooves and investigated the cooling performance enhancement.

Improvement in LED structure for enhanced light-emission

  • Park, Seong-Ju
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.21-21
    • /
    • 2003
  • To increase the light-emission efficiency of LED, we increased the internal and external quantum efficiency by suppressing the defect formation in the quantum well and by increasing the light extraction efficiency in LED, respectively. First, the internal quantum efficiency was improved by investigating the effect of a low temperature (LT) grown p-GaN layer on the In$\sub$0.25/GaN/GaN MQW in green LED. The properties of p-GaN was optimized at a low growth temperature of 900oC. A green LED using the optimized LT p-type GaN clearly showed the elimination of blue-shift which is originated by the MQW damage due to the high temperature growth process. This result was attributed to the suppression of indium inter-diffusion in MQW layer as evidenced by XRD and HR-TEM analysis. Secondly, we improved the light-extraction efficiency of LED. In spite of high internal quantum efficiency of GaN-based LED, the external quantum efficiency is still low due to the total internal reflection of the light at the semiconductor-air interface. To improve the probability of escaping the photons outside from the LED structure, we fabricated nano-sized cavities on a p-GaN surface utilizing Pt self-assembled metal clusters as an etch mask. Electroluminescence measurement showed that the relative optical output power was increased up to 80% compared to that of LED without nano-sized cavities. I-V measurement also showed that the electrical performance was improved. The enhanced LED performance was attributed to the enhancement of light escaping probability and the decrease of resistance due to the increase in contact area.

  • PDF

PLIF and PIV Measurements of Jet Flames with Acoustically Forced Coaxial Air Jets

  • Han Jeong Jae;Kim Munki;Yun Sang Wook;Yoon Youngbin
    • 한국가시화정보학회지
    • /
    • 제3권2호
    • /
    • pp.51-56
    • /
    • 2005
  • Acoustic excitations were imposed to coaxial air jet of non-premixed jet flame with hydrogen gaseous injected axially in the center of the flow. The frequencies of excitation were three dominant resonant frequencies at 1L, 2L, 3L. modes including specially 514 Hz (2L-mode) which was estimated theoretically as longitudinal mode of combustor characteristics. The mixing enhancement by acoustic forcing has been investigated quantitatively using PLIF and PIV. The effect of acoustic excitation on combustion process was significant to enhance mixing rate that coincides with specific resonant frequencies. And the behavior of vortex-interaction on flame structure was a good evidence to investigate the phenomenon of shear/mixing layer of fuel-air jet structure. The results obtained in this study concludes that generated streamwise vortex by acoustic excitation has a potential to enhance the mixing rate and abating NOx emissions.

  • PDF

고속 운전조건을 고려한 하이브리드 자동차용 ISG 모터 방열설계 및 해석 평가 (Thermal Design and Analysis Evaluation of ISG Motor for Hybrid Electric Vehicles considering High-speed Driving Condition)

  • 김성철
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.59-64
    • /
    • 2014
  • Integrated Starter Generator (ISG) system improves the fuel economy of hybrid electric vehicles by using idle stop and go function, and regenerative braking system. To obtain the high performance and durability of ISG motor under continuously high load condition, the motor needs to properly design the cooling system (cooling fan and cooling structure). In this study, we suggested the enhanced design by modifying the thermal design of the ISG motor and then analyzed the improvement of the cooling performance under high-speed condition and generating mode by CFD simulation. The temperatures at the coil and the magnet of the enhanced model were decreased by about $4^{\circ}C$ and $6^{\circ}C$, respectively, compared to those of the conventional model. Therefore, we verified the cooling performance enhancement of the novel thermal design in the case of core loss increment due to the higher speed condition.