• 제목/요약/키워드: Structural weight

검색결과 2,482건 처리시간 0.026초

사출성형기의 주요 구조부품 해석 (Structural Analysis of Injection Molding Machine Components)

  • 우창수;이상록
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.5-12
    • /
    • 1995
  • Mold platen are one of the most important structural components of the injection molding machine. Mold platen had been designed, and manufactured based on the experience and the method of trial and error. Recently, as the computer progress, the numerical simulation method using commercial finite element analysis code has been used to analyze the characteristics of components. It's a urgent problem to reduce the weight of mold platen while preserving the safety and reliability for the structual failure. Finite element analyses to establish basic design technologies and reducing the weight of mold platen were carried out. As result, we are obtained the about 10% reducing the weight for mold platen.

  • PDF

위상최적설계를 활용한 압출기의 플라텐 경량화 설계 (Platen Weight Reduction Design of Extruder Using Topology Optimization Design)

  • 김동율;김지욱;이정인;조아라;이성윤;정명식;고대철;장진석
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.302-308
    • /
    • 2022
  • In this study, the weight of the platen was reduced using the structural strength analysis and topology optimization design of the extruder by finite element analysis. The main components of the extruder such as the stem and billet, were modeled, and the maximum stress and safety factor were verified through structural strength analysis. Based on the results of the structural strength analysis, the optimal phase that satisfies the limitation given to the design area of the structure and maximizes or minimizes the objective function was obtained through a numerical method. The platen was redesigned with a phase-optimal shape, the weight was reduced by 40% (from the initial weight of 11.1 tons to 6.6 tons), and the maximum stress was 147.49 MPa safety factor of 1.86.

전남지역 성인들의 음식 몰입이 채소 소비에 미치는 간접효과의 분석 (Analyzing the Indirect Effect of Food Involvement on Vegetable Consumption among Adults in Jeonnam Area)

  • 강종헌;정항진
    • 한국식생활문화학회지
    • /
    • 제23권1호
    • /
    • pp.97-104
    • /
    • 2008
  • The purpose of this study was to measuring the causal relationships among food involvement, health, mood, convenience, sensory appeal, weight control and vegetable consumption. A total of 290 questionnaires were completed. Structural equation model was used to measure the causal relationships among constructs. Results of the study demonstrated that the structural analysis result for the data also indicated excellent model fit. The effects of food involvement on health, mood, convenience, sensory appeal, weight control and vegetable consumption were statistically significant. As expected, health, mood, sensory appeal and eight control had significant effects on vegetable consumption. Moreover, health, mood, convenience, sensory appeal and weight control played mediating roles in the relationship between food involvement and vegetable consumption. In conclusion, based on structural analysis, a model was proposed of interrelations among food involvement, health, mood, convenience, sensory appeal, weight control and vegetable consumption. It should be noted that the original vegetable consumption model was modified and should, preferably, be alidated in future research. Other variables, such as attitude, subjective norm and perceived behavior control, may be incorporated to form vegetable consumption models that consist of new antecedent and consequence pairs.

Evaluation on Structural Safety for Carbon-Epoxy Composite Wing and Tail Planes of the 1.2 Ton Class WIG

  • Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2019
  • In the present study, structural safety and stability on the main wing and tail planes of the 1.2 ton WIG(Wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The carbon-epoxy composite material was used in design of wing structure. The skin-spar with skin-stressed structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, the design load was estimated with maximum flight load. From static strength analysis results using finite element method of the commercial codes. From the stress analysis results of the main wing, it was confirmed that the upper skin structure between the second rib and the third rib was unstable for the buckling load. Therefore in order to solve this problem, three stiffeners at the buckled region were added. After design modification, even though the weight of the wing was a little bit heavier than the target weight, the structural safety and stability was satisfied for design requirements.

Small creatures can lift more than their own bodyweight and a human cannot-an explanation through structural mechanics

  • Balamonica, K;Jothi Saravanan, T.;Bharathi Priya, C.;Gopalakrishnan, N.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제4권1호
    • /
    • pp.9-20
    • /
    • 2019
  • Living beings are formed of advanced biological and mechanical systems which exist for millions of years. It is known that various animals and insects right from small ants to huge whales have different weight carrying capacities, which is generally expressed as a ratio of their own bodyweights i.e., Strength to Bodyweight Ratio (SBR). The puzzle is that when a rhinoceros beetle (scientific name: Dynastinae) can carry 850 times its own bodyweight, why a man cannot accomplish the same feat. There are intrinsic biological and mechanical reasons related to their capacities, as per biomechanics. Yet, there are underlining principles of engineering and structural mechanics which tend to solve this puzzle. The paper attempts to give a plausible answer for this puzzle through structural mechanics and experimental modeling techniques. It is based on the fact that smaller an animal or creature, it has larger value of weight lifting by self-weight ratio. The simple example of steel prism model discussed in this paper, show that smaller the physical model size, larger is its SBR value. To normalize this, the basic length of the model need to be considered and when multiplied with SBR, a constant is arrived. Hence, the aim of the research presented is to derive this constant on a pan-living being spectrum through size/scaling effect.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

ASA알고리즘을 이용한 강구조물의 최적 중량 설계 (Optimal Weight Design of Steel Structures Using Adaptive Simulated Annealing Algorithm)

  • 배준서;홍성욱;조영상
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권5호
    • /
    • pp.125-132
    • /
    • 2008
  • 구조최적화는 최근 CAD와 컴퓨터 기술이 발전하면서 구조설계부분에 널리 이용되고 있다. 본 연구에서는 30층의 강구조물을 대상으로 유한요소해석 및 어댑티브 시뮬레이티드 어닐링 알고리즘을 이용하여 최적중량설계를 구현하였다. 최적설계는 모든 설계상수와 설계하중들이 주어졌을 때, 목적함수가 최소로 됨과 동시에 모든 설계제약조건을 만족시키는 설계변수를 결정하는 설계법이라고 정의할 수 있다. 최적설계 구현을 통해 건설 측면에 있어 성능 향상과 신뢰도 향상 효과를 가져 올 수 있을 것이다.

타워크레인 텔레스코핑 작업의 풍속 및 하중에 대한 구조 안전성 연구 (A Study on the Structural Safety of Tower Crane Telescoping Work according to Wind Speed and Load)

  • 정성룡;이도근;백신원;신상연
    • 한국안전학회지
    • /
    • 제36권1호
    • /
    • pp.9-17
    • /
    • 2021
  • This study analyses the load imbalance of the tower crane used in telescoping work for structural safety, owing to the difference in wind speed and balance weight position. This is because wind speed and position of the balance weight have a significant impact on the structural stresses of a tower crane during telescoping work. Therefore, structural analysis was performed on the 290HC model, which is often used at construction sites and has only one cylinder installed. Moreover, two models were classified to determine the load acting on the connecting part of the telescopic cage to slewing platform and the cylinder. Five types of balance weight positions were applied at regular intervals from jibs; moreover, four types of wind load criteria were differently applied. Hence, the telescopic cage columns were destroyed at all balance weight positions at a wind speed of 30 m/s and only at certain locations at a wind speed of 20 m/s. Furthermore, failures occurred for cylinders, torsional, and bending at wind speeds of 30 m/s and 20 m/s, load imbalances above the allowable thresholds considering the safety factor. In addition, the load imbalance in the telescoping work also varied depending on the position of the balance weights. The results of these studies have validated that the current standards of adjusting the appropriate position of the balance weights on the jib are completely valid, with the telescoping work to be executed only at wind speeds of less than equal to 10 m/s.

모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석 (Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat)

  • 최보엽;손창련;손준식;박민호;송창용
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Falling Weight Deflectometer 처짐값을 이욤한 아스팔트 포장체의 구조적 상태 평가기법 개발 (Development of the Structural Condition Evaluation Technique for Asphalt Pavements Using Falling Weight Deflectometer Deflections)

  • 손종철;이석근;안덕순;박희문
    • 한국도로학회논문집
    • /
    • 제8권4호
    • /
    • pp.115-124
    • /
    • 2006
  • 본 논문의 목적은 Falling Weight Deflectometer 처짐값을 이용하여 아스팔트 포장체의 구조적 상태 평가기법을 개발하고, 이를 이용하여 포장체 각 층의 구조적 상태 평가기준을 제시함에 있다. 유한요소해석 아스팔트 포장체 구조해석 프로그램을 이용하여 가상적 데이터베이스를 구축하여 포장체의 표면처짐값과 포장체 내부반응과의 상관관계를 도출하였다. FWD 처짐값과 포장체 두께를 이용하여 직접적으로 포장체 내부반응을 계산할 수 있는 아스팔트 포장체의 내부반응 모델을 통계적 회귀분석을 통하여 개발하였다. 개발된 반응모델을 토대로 아스팔트 포장체 각 층의 구조적 상태를 평가하기 위한 절차를 제시하였다. 본 연구에서 제시한 평가 절차를 검증하기 위하여 국도 11개와 지방도 8개 노선에서 FWD와 동적관입시험을 수행하였으며, 현장에서 채취한 코어는 아스팔트 시편의 삼축압축반복재하시험을 수행하였다. 연구결과, 아스팔트층의 경우 아스팔트층 하부의 인장변형률값과 회복탄성계수값이 아스팔트 층의 강성 특성을 평가하는 중요한 인자로 판단되었다. 보조기층에서는 BDI값과 보조기층 상부의 압축변형률이 보조기층의 지지력 평가에 적합하였으며, 하부층의 경우 BCI값과 하부층 상부의 압축변형률값이 노상토의 지지력 및 상태를 판단하는데 적절한 인자로 선정되었다. 아스팔트층과 보조기층은 3단계, 하부층은 2단계로 구분하여 아스팔트 포장체의 구조적 상태를 평가 할 수 있는 기준을 제시하였다.

  • PDF