• Title/Summary/Keyword: Structural wall

Search Result 1,763, Processing Time 0.026 seconds

A theoretical study on the factors for the seismic performance of RC T-shaped walls (철근콘크리트 T형 벽체의 내진성능 영향인자에 관한 해석적 연구)

  • 하상수;최창식;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.521-526
    • /
    • 2002
  • The seismic performance of structural walls subjected to the cyclic lateral loads are influenced by various factors, like sectional shape, aspect ratio, reinforcement ratio, arrangement of reinforcement, and axial load ratio etc. In this research, reinforced concrete structural walls with the T-shaped cross section were selected. The seismic performance of T-shaped wall was affected by the many (actors because T-shaped wall is irregular wall composed to two rectangular walls. Especially the seismic performance of T-shaped wall varies with the flange condition and the various factors including the flange condition were determined. Therefore, the objective of this study is to understand the factors to improve seismic performance of RC T-shaded tv using sectional analysis.

  • PDF

Development and Seismic Performance of Vertical Joints in Precast Concrete Shear Walls under Cyclic Loads (반복하중을 받는 PC 전단벽체에서 수직접합부의 개발 및 내진성능평가)

  • Kim, Ook Jong;Oh, Jae Keun;Kang, Su Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.140-148
    • /
    • 2012
  • Recently there are many attempts to introduce PC construction method in buildings. But the study on PC structural wall has been made progress so slowly because it is very difficult to develop new items. In this study, we have developed new vertical joint on PC wall in order to upgrade constructivity and structural performance of the existing connections, then we have evaluated the seismic resistance performance. As a result of the cyclic loading tests for two specimens, proposed vertical joint on PC wall has shown that it behave the excellent structural performance in comparison to PC wall having no joint. Therefore, we think that proposed vertical joint is the system to apply buliding structure.

In-structure Response Evaluation of Shear Wall Structure via Shaking Table Tests (진동대 실험을 통한 전단벽 구조물의 층응답 특성 평가)

  • Jung, Jae-Wook;Ha, Jeong-Gon;Hahm, Daegi;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • After the manual shutdown of the Wolseong nuclear power plant due to an earthquake in Gyeongju in 2016, anxiety about the earthquake safety of nuclear power plants has become a major social issue. The shear wall structure used as a major structural element in nuclear power plants is widely used as a major structural member because of its high resistance to horizontal loads such as earthquakes. However, due to the complexity of the structure, it is challenging to predict the dynamic characteristics of the structure. In this study, a three-story shear wall structure is fabricated, and the in-structure response characteristics of the shear wall structure are evaluated through shaking table tests. The test is performed using the Gyeongju earthquake that occurred in 2016, and the response characteristics due to the domestic earthquake are evaluated.

Low Attenuation Waveguide for Structural Health Monitoring with Leaky Surface Waves

  • Bezdek, M.;Joseph, K.;Tittmann, B.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.241-262
    • /
    • 2012
  • Some applications require structural health monitoring in inaccessible components. This paper presents a technique useful for Structural Health Monitoring of double wall structures, such as double wall steam pipes and double wall pressure vessels separated from an ultrasonic transducer by three layers. Detection has been demonstrated at distances in excess of one meter for a fixed transducer. The case presented here is for one of the layers, the middle layer, being a fluid. For certain transducer configurations the wave propagating in the fluid is a wave with low velocity and attenuation. The paper presents a model based on wave theory and finite element simulation; the experimental set-up and observations, and comparison between theory and experiment. The results provide a description of the technique, understanding of the phenomenon and its possible applications in Structural Health Monitoring.

Improvement of Flexural Performance of Steel Diaphragm Walls With Interlocking Effects (인터록킹에 의한 강재지하연속벽의 휨성능 개선)

  • Lee, Jae Young;Hassan, Md Mehidi;Jeong, Gawn Woo;Han, Shin In;Jeong, Hae Chan;Kim, Doo Kie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.365-372
    • /
    • 2024
  • According to the recently revised seismic design standards, seismic design of underground structures is required. Concrete underground outer walls are installed separately from temporary earth retaining walls as permanent underground outer walls. This raises issues of constructability, economy, and space narrowness. Therefore, a steel underground continuous wall is developed to promote construction efficiency, safety, and economy by introducing the off-site construction (OSC) method of underground structures. The steel underground continuous wall will be used as a permanent underground continuous wall along with the temporary earth retaining wall. To this end, it must satisfy structural performance equivalent to or higher than the concrete underground outer wall. The integrity and in-plane shear resistance performance between single panel members must be satisfied to be used as a permanent wall. The interlocking effect through geometric bonding is intended to enhance the bonding effect between these members. Therefore, trapezoidal members were developed, and bending performance tests and analyses of each member were performed to confirm the structural bending performance of these members. The bending performance improvement effect of the combined multiple members was confirmed. As a result, it was confirmed that the integration of members and structural performance was improved due to the interlocking effect of the absence of joints. The seismic design analysis of the demonstration site was performed with these developed members, and it was confirmed that the structural performance was equivalent to or higher than that of the existing RC underground continuous wall. As a result, it was confirmed that the steel underground continuous wall can be used as a permanent underground wall together with the temporary earth retaining wall.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Development of a Precast Concrete Structural Wall Adopting Improved Connections in the Plastic Hinge Region (소성힌지 영역의 접합부를 개선한 PC 구조벽체의 개발)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.15-26
    • /
    • 2010
  • The purpose of this study is to develop a precast concrete structural wall system that can assure reliable seismic performance. In previous studies, the connections of precast concrete structural walls have had some problems in their seismic performance. Therefore, this research proposes precast concrete structural walls which have an improved seismic performance. One is a hybrid precast concrete structural wall that is composed of a reinforced concrete component and a precast concrete component, and another is a precast concrete wall whose reinforcements have a partially reduced section and are partially unbonded from the surrounding concrete. To evaluate the seismic performance of the proposed precast concrete structural walls, the behavior of three specimens, including a reinforced concrete wall, were subjected to reversed cyclic combined flexure and shear. According to the test results, the proposed precast concrete structural walls have reliable seismic performance.

Seismic response and damage development analyses of an RC structural wall building using macro-element

  • Hemsas, Miloud;Elachachi, Sidi-Mohammed;Breysse, Denys
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.447-470
    • /
    • 2014
  • Numerical simulation of the non-linear behavior of (RC) structural walls subjected to severe earthquake ground motions requires a reliable modeling approach that includes important material characteristics and behavioral response features. The objective of this paper is to optimize a simplified method for the assessment of the seismic response and damage development analyses of an RC structural wall building using macro-element model. The first stage of this study investigates effectiveness and ability of the macro-element model in predicting the flexural nonlinear response of the specimen based on previous experimental test results conducted in UCLA. The sensitivity of the predicted wall responses to changes in model parameters is also assessed. The macro-element model is next used to examine the dynamic behavior of the structural wall building-all the way from elastic behavior to global instability, by applying an approximate Incremental Dynamic Analysis (IDA), based on Uncoupled Modal Response History Analysis (UMRHA), setting up nonlinear single degree of freedom systems. Finally, the identification of the global stiffness decrease as a function of a damage variable is carried out by means of this simplified methodology. Responses are compared at various locations on the structural wall by conducting static and dynamic pushover analyses for accurate estimation of seismic performance of the structure using macro-element model. Results obtained with the numerical model for rectangular wall cross sections compare favorably with experimental responses for flexural capacity, stiffness, and deformability. Overall, the model is qualified for safety assessment and design of earthquake resistant structures with structural walls.

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

Discontinuous deformation analysis for reinforced concrete frames infilled with masonry walls

  • Chiou, Yaw-Jeng;Tzeng, Jyh-Cherng;Hwang, Shuenn-Chang
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.201-215
    • /
    • 1998
  • The structural behavior of reinforced concrete frame infilled with a masonry wall is investigated by the method of discontinuous deformation analysis (DDA). An interface element is developed and it is incorporated into DDA to analyze the continuous and discontinuous behavior of the masonry structure. The numerical results are compared with previous research and possess satisfactory agreement. Then the structural behavior and stress distribution of a reinforced concrete frame infilled with a masonry wall subjected to a horizontal force are studied. In addition, the justification of equivalent strut is assessed by the distribution of principal stresses. The results show that the behavior of the masonry structure is highly influenced by the failure of mortar. On the basis of the distribution of principal stress of the masonry wall in the reinforced concrete frame, the equivalent strut can be approximately substituted for the masonry wall without separation and opening. However, the application of equivalent strut to the masonry wall with separation and opening needs further study.