• 제목/요약/키워드: Structural variation

Search Result 1,629, Processing Time 0.039 seconds

Lightweight Optimization of Infant Pop-up Seat Frame Using DMTO in Static Condition (DMTO 기법을 활용한 정적 하중환경의 유아용 팝업시트 프레임의 경량화)

  • Hong, Seung Pyo;Cha, Seung Min;Shin, Dong Seok;Jeon, Euy Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.102-110
    • /
    • 2022
  • This paper proposes a solution to the problems of manufacturing cost and processability by applying discrete material and thickness optimization (DMTO) and minimizing the use of high-strength, lightweight materials in the optimization process. A simple infant pop-up seat model was selected as the application target, and the weight reduction effect and variation in strength according to the optimization results were observed. In this study, a simplified finite element model of an infant pop-up seat frame was first constructed. The model was used to perform a static structural analysis to verify the weight and strength of each part. The D-optimal design of the experimental method was then used to observe the influence of each part on the weight and strength. This process was applied using discrete thickness optimization (DTO) (which applies high-strength, lightweight materials and optimizes only the thickness) and DMTO (which considers both the material and thickness). The DTO and DMTO results were compared to verify the design method that determines the major parts and simultaneously considers the material and thickness. Accordingly, in this study, an optimal lightweight design that satisfied the strength standards of the seat frame was derived. Furthermore, discretization parameters were used to minimize the application of high-strength, lightweight materials.

Analytical and finite element method for the bending analysis of the thick porous functionally graded sandwich plate including thickness stretching effect

  • Imad Benameur;Youcef Beldjelili;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.593-605
    • /
    • 2023
  • This work presents a comparison between analytical and finite element analysis for bending of porous sandwich functionally graded material (FGM) plates. The plate is rectangular and simply supported under static sinusoidal loading. Material properties of FGM are assumed to vary continuously across the face sheets thickness according to a power-law function in terms of the volume fractions of the constituents while the core is homogeneous. Four types of porosity are considered. A refined higher-order shear with normal deformation theory is used. The number of unknowns in this theory is five, as against six or more in other shear and normal deformation theories. This theory assumes the nonlinear variation of transverse shear stresses and satisfies its nullity in the top and bottom surfaces of the plate without the use of a shear correction factor. The governing equations of equilibrium are derived from the virtual work principle. The Navier approach is used to solve equilibrium equations. The constitutive law of the porous FGM sandwich plate is implemented for a 3D finite element through a subroutine in FORTRAN (UMAT) in Abaqus software. Results show good agreement between the finite element model and the analytical method for some results, but the analytical method keeps giving symmetric results even with the thickness stretching effect and load applied to the top surface of the sandwich.

Numerical prediction of the proximity effects on wind loads of low-rise buildings with cylindrical roofs

  • Deepak Sharma;Shilpa Pal;Ritu Raj
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.277-292
    • /
    • 2023
  • Low-rise structures are generally immersed within the roughness layer of the atmospheric boundary layer flows and represent the largest class of the structures for which wind loads for design are being obtained from the wind standards codes of distinct nations. For low-rise buildings, wind loads are one of the decisive loads when designing a roof. For the case of cylindrical roof structures, the information related to wind pressure coefficient is limited to a single span only. In contrast, for multi-span roofs, the information is not available. In this research, the numerical simulation has been done using ANSYS CFX to determine wind pressure distribution on the roof of low-rise cylindrical structures arranged in rectangular plan with variable spacing in accordance with building width (B=0.2 m) i.e., zero, 0.5B, B, 1.5B and 2B subjected to different wind incidence angles varying from 0° to 90° having the interval of 15°. The wind pressure (P) and pressure coefficients (Cpe) are varying with respect to wind incidence angle and variable spacing. The results of present numerical investigation or wind induced pressure are presented in the form of pressure contours generated by Ansys CFD Post for isolated as well as variable spacing model of cylindrical roofs. It was noted that the effect of wind shielding was reducing on the roofs by increasing spacing between the buildings. The variation pf Coefficient of wind pressure (Cpe) for all the roofs have been presented individually in the form of graphs with respect to angle of attacks of wind (AoA) and variable spacing. The critical outcomes of the present study will be so much beneficial to structural design engineers during the analysis and designing of low-rise buildings with cylindrical roofs in an isolated as well as group formation.

New energy partitioning method in essential work of fracture (EWF) concept for 3-D printed pristine/recycled HDPE blends

  • Sukjoon Na;Ahmet Oruc;Claire Fulks;Travis Adams;Dal Hyung Kim;Sanghoon Lee;Sungmin Youn
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This study explores a new energy partitioning approach to determine the fracture toughness of 3-D printed pristine/recycled high density polyethylene (HDPE) blends employing the essential work of fracture (EWF) concept. The traditional EWF approach conducts a uniaxial tensile test with double-edge notched tensile (DENT) specimens and measures the total energy defined by the area under a load-displacement curve until failure. The approach assumes that the entire total energy contributes to the fracture process only. This assumption is generally true for extruded polymers that fracture occurs in a material body. In contrast to the traditional extrusion manufacturing process, the current 3-D printing technique employs fused deposition modeling (FDM) that produces layer-by-layer structured specimens. This type of specimen tends to include separation energy even after the complete failure of specimens when the fracture test is conducted. The separation is not relevant to the fracture process, and the raw experimental data are likely to possess random variation or noise during fracture testing. Therefore, the current EWF approach may not be suitable for the fracture characterization of 3-D printed specimens. This paper proposed a new energy partitioning approach to exclude the irrelevant energy of the specimens caused by their intrinsic structural issues. The approach determined the energy partitioning location based on experimental data and observations. Results prove that the new approach provided more consistent results with a higher coefficient of correlation.

Analysis of Structural Changes in Container Volume of Gwangyang Port (광양항 컨테이너물동량의 구조적 변화추이분석)

  • Kim, Seung-Chul;Kang, Hyo-Won
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.171-185
    • /
    • 2022
  • This study conducted a comparative analysis by period and route through a variation allocation analysis with domestic container ports to analyze the change structure of container volume at Gwangyang Port. As a result of analysis of the absolute volume of container traffic at Gwangyang Port, the period and routes that showed the highest growth values by period and route were Europe, North America, Middle East, and South America in 2001-2007. It was followed by Southeast Asia, Oceania, Far East Asia, Europe, and Japan during the 2008-2012 period. Among the sections from 2018 to 2022, there are Oceania and Southwest Asia. In order to secure container shipments at Gwangyang Port in the future, it is essential to secure routes in Europe, the Americas, and Africa, and it is necessary to secure port competitiveness through improved management and service of container terminal operators

Theoretical formulation for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace

  • Jouneghani, Habib Ghasemi;Fanaie, Nader;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.437-454
    • /
    • 2022
  • Elliptic-braced simple resisting frame as a new lateral bracing system installed in the middle bay of frame in building facades has been recently introduced. This system not only creates a problem for opening space from the architectural viewpoint but also improves the structural behavior. Despite the researches on the seismic performance of lateral bracing systems, there are few studies performed on the effect of the stiffness parameters on the elastic story drift and calculation of period in simple braced steel frames. To overcome this shortcoming, in this paper, for the first time, an analytical solution is presented for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace subjected to lateral load. In addition, for the first time, in this study, a precise formulation has been developed to evaluate the elastic stiffness variation in a steel frame equipped with a two-dimensional single-story single-span elliptic brace using strain energy and Castigliano's theorem. Thus, all the effective factors, including axial and shear loads as well as bending moments of elliptic brace could be considered. At the end of the analysis, the lateral stiffness can be calculated by an improved and innovative relation through the energy method based on the geometrical properties of the employed sections and specification of the used material. Also, an equivalent element of an elliptic brace was presented for the ease of modeling and use in linear designs. Application of the proposed relation have been verified through a variety of examples in OpenSees software. Based on the results, the error percentage between the elastic stiffness derived from the developed equations and the numerical analyses of finite element models was very low and negligible.

Electroosmotic Water Removal in Wet Porous Materials (다공성 흡수매체에 대한 정전삼투 탈수효과)

  • Park, Seon-Mi;Park, Mi-Jung;Ha, Ji-Soo;Chang, Hyuk-Sang
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Various technical methods are applied for removing water from the water-retaining media, and the energy efficiency is the main concern in those methods. The electroosmotic process is studied as an efficient way for dewatering. An experimental electroosmotic reactor is designed and used for evaluating the effects of operational variables. The operational variables such as the electrical fields and the structure of water-retaining medias were studied. Three different shapes of polarized electric fields in ranges of 0-100 V/cm and 0-10 kHz are used as the source of electric voltage. The effect of electroosmotic process with respect to the structural variation is estimated by filling the electroosmotic reactor with the glass beads in 0.18 mm, 0.35 mm and 1.2 mm in diameters. 6% of water removal is obtained in the simulating electroosmotic reactor of glass beads. The estimated energy consumption in the simulating electroosmotic was 330~490 cal/g-water.

Understanding the Technical Properties of Delonix regia (HOOK.) RAF. Wood: A Lesser Used Wood Species

  • Funke Grace Adebawo;Olayiwola Olaleye Ajala;Olaoluwa Adeniyi Adegoke;Timileyin Samuel Aderemi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Properties of a lesser-used wood species were investigated to determine its potential for structural utilization. Trees of Delonix regia were felled and sampled at the base, middle and top and then sectioned to inner wood, middle wood, and outer wood for variation across the axial and radial directions. Hence, selected physical and mechanical properties as well as natural durability of D. regia along the radial and axial directions were examined. Obtained data were analyzed using analysis of variance (ANOVA) at α0.05. There was no significant difference in the Moisture content (MC) of the wood but specific gravity (SG) decreased from base to top ranging from 0.35-0.44. Water absorption, volumetric swelling, and volumetric shrinkage range from 46.18-51.86%, 2.57-4.02%, and 2.26-3.96% respectively along the axial plane. The weight loss for graveyard exposure and accelerated laboratory decay test ranged from 25.14-48.00% and 32.02-44.45% respectively. Modulus of Rupture and Modulus of Elasticity values range from 29.42-72.68 Nmm2 and 3,834.54-8,830.37 Nmm2 respectively. The SG values has confirmed the species as a medium density wood and values of other properties tested showed that the wood is dimensional stable and moderately resistance to fungi and termite. Hence, it could be used for light construction purposes such as furniture and other interior woodwork.

Investigation of Adhesion property between Glass Fiber Reinforced Plastic and Polyurethane adhesives on Peel strength under Gyogenic tempernture (극저온에서 유리섬유강화플라스틱 표면의 유리섬유와 폴리우레탄 접착제간의 접착특성이 전체 박리강도에 미치는 영향에 대한 연구)

  • Shon, Min-Young;Lee, Jae-Kwang;Hong, Jeong-Lak
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2009
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane adhesive is using for LNG carrier with cryogenic temperature condition. Even if similar polyurethane adhesive is used for different substrate, it shows different adhesion properties. Specially, variation of adhesion properties depending on the resin system or fiber is very important factor for selection of adhesive on industrial application. In present study, we got different peel strength according to the different test temperature when different polyurethane adhesive was used for same fiber reinforced composite. The main cause was investigated using by SEM and it was proven that the different adhesion property between glass fiber on composite surface and polyurethane adhesives at cryogenic temperature.

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.