• 제목/요약/키워드: Structural variation

검색결과 1,629건 처리시간 0.028초

Nonlinear model to predict the torsional response of U-shaped thin-walled RC members

  • Chen, Shenggang;Ye, Yinghua;Guo, Quanquan;Cheng, Shaohong;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1039-1061
    • /
    • 2016
  • Based on Vlasov's torsional theory of open thin-walled members and the nonlinear constitutive relations of materials, a nonlinear analysis model to predict response of open thin-walled RC members subjected to pure torsion is proposed in the current study. The variation of the circulatory torsional stiffness and warping torsional stiffness over the entire loading process and the impact of warping shear deformation on the torsion-induced rotation of the member are considered in the formulation. The torque equilibrium differential equation is then solved by Runge-Kutta method. The proposed nonlinear model is then applied to predict the behavior of five U-shaped thin-walled RC members under pure torsion. Four of them were tested in an earlier experimental study by the authors and the testing data of the fifth one were reported in an existing literature. Results show that the analytical predictions based on the proposed model agree well with the experimental data of all five specimens. This clearly shows the validity of the proposed nonlinear model analyzing behavior of U-shaped thin-walled RC members under pure torsion.

Experimental investigation on the variation of thermal conductivity of soils with effective stress, porosity, and water saturation

  • Lee, So-Jung;Kim, Kyoung-Yul;Choi, Jung-Chan;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.771-785
    • /
    • 2016
  • The thermal conductivity of soils is an important property in energy-related geotechnical structures, such as underground heat pumps and underground electric power cable tunnels. This study explores the effects of geotechnical engineering properties on the thermal conductivity of soils. The thermal conductivities of quartz sands and Korean weathered silty sands were documented via a series of laboratory experiments, and its variations with effective stress, porosity, and water saturation were examined. While thermal conductivity was found to increase with an increase in the effective stress and water saturation and with a decrease in porosity, replacing air by water in pores the most predominantly enhanced the thermal conductivity by almost one order of magnitude. In addition, we have suggested an improved model for thermal conductivity prediction, based on water saturation, dry thermal conductivity, saturated thermal conductivity, and a fitting parameter that represents the curvature of the thermal conductivity-water saturation relation.

개질된 벤토나이트가 혼입된 폴리비닐알코올/벤토나이트 나노복합 필름의 제조 및 특성분석 (Preparation and Characterization of Poly(vinyl alcohol)/bentonite Nanocomposites Films with Modified Bentonites)

  • 지병철;양성백;이정언;박재민;한명동;김의주;염정현
    • 한국염색가공학회지
    • /
    • 제33권3호
    • /
    • pp.161-167
    • /
    • 2021
  • Polymer nanocomposite is considered a great alternative to solve the limitations that exist in a simple combination material, as well as to produce multifunctional and high-performance results. In this research, PVA/bentonite nanocomposite films were prepared based on the presence or absence of modification of nano-clay(bentonite) a SUPERGEL® product, modification conditions and content, and the structural variation of the prepared PVA/bentonite nanocomposite films were examined. The effect of variations in the internal structure of the nanocomposite on mechanical and thermal properties was investigated. As a result of evaluating the thermal characteristics of the PVA/bentonite nanocomposite film based on the concentration of the modified bentonite, it was verified that the thermal characteristics and stability were improved because of interaction between the polymer and the modified nano-clay.

종합병원에서 진료량과 의료이익의 관계 (The Relationship between Medical Operating Income and Volume of Medical Services Provided at General Hospitals in Korea)

  • 임민경;김정하;김선제
    • 한국병원경영학회지
    • /
    • 제26권3호
    • /
    • pp.13-27
    • /
    • 2021
  • Purpose: We examined the relationship between operating income and volume of medical services provided at general hospitals in 2018 according to characteristics of general hospitals and measured as operating income(net income) and volume(adjusted inpatient days) covered or non-covered by National Health Insurance(NHI). Methodology: Finance data from income statement reports in 212 general hospitals and the national health insurance claim data of these hospitals were used. The characteristics of the general hospital were divided into structural, operational, financial, and patient aspects. Operating income and volume were divided into covered and non-covered by NHI. Findings: The results showed high volume hospitals tended to be more profitable than low volume hospitals, especially in non-covered services. Operating income was more likely to be sensitive to non-covered services volume than to covered services volume. Practical Implications: It is necessary to understand the volume of services in non-covered, in order to obtain reliable cost information to be used for the fee schedule. Researches on small size hospitals(<160 beds) are needed, with a large variation in the volume of services and a strong tendency to compensate for the loss in the covered part in non-covered part.

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

Long-term monitoring of super-long stay cables on a cable-stayed bridge

  • Shen, Xiang;Ma, Ru-jin;Ge, Chun-xi;Hu, Xiao-hong
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.357-368
    • /
    • 2018
  • For a long cable-stayed bridge, stay cables are its most important load-carrying components. In this paper, long-term monitoring of super-long stay cables of Sutong Bridge is introduced. A comprehensive data analysis procedure is presented, in which time domain and frequency domain based analyses are carried out. In time domain, the vibration data of several long stay cables are firstly analyzed and the standard deviation of the acceleration of stay cables, and its variation with time are obtained, as well as the relationship between in-plane vibration and out-plane vibration. Meanwhile, some vibrations such as wind and rain induced vibration are detected. Through frequency domain analysis, the basic frequencies of the stay cables are identified. Furthermore, the axial forces and their statistical parameters are acquired. To investigate the vibration deflection, an FFT-based decomposition method is used to get the modal deflection. In the end, the relationship between the vibration amplitude of stay cables and the wind speed is investigated based on correlation analysis. Through the adopted procedure, some structural parameters of the stay cables have been derived, which can be used for evaluating the component performance and corresponding management of stay cables.

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces

  • Mohammadzadeh, Behzad;Choi, Eunsoo;Kim, Dongkyun
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.601-621
    • /
    • 2019
  • This study presents a comprehensive nonlinear dynamic approach to investigate the linear and nonlinear vibration of sandwich plates fabricated from functionally graded materials (FGMs) resting on an elastic foundation. Higher-order shear deformation theory and Hamilton's principle are employed to obtain governing equations. The Runge-Kutta method is employed together with the commercially available mathematical software MAPLE 14 to solve the set of nonlinear dynamic governing equations. Method validity is evaluated by comparing the results of this study and those of previous research. Good agreement is achieved. The effects of temperature change on frequencies are investigated considering various temperatures and various volume fraction index values, N. As the temperature increased, the plate frequency decreased, whereas with increasing N, the plate frequency increased. The effects of the side-to-thickness ratio, c/h, on natural frequencies were investigated. With increasing c/h, the frequencies increased nonlinearly. The effects of foundation stiffness on nonlinear vibration of the sandwich plate were also studied. Backbone curves presenting the variation of maximum displacement with respect to plate frequency are presented to provide insight into the nonlinear vibration and dynamic behavior of FGM sandwich plates.

Experimental and Finite Element Analysis of Free Vibration Behaviour of Graphene Oxide Incorporated Carbon Fiber/Epoxy Composite

  • Adak, Nitai Chandra;Uke, Kamalkishor Janardhanji;Kuila, Tapas;Samanta, Pranab;Lee, Joong Hee
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.311-316
    • /
    • 2018
  • In the present study, the effect of GO in damping capacity of CF/epoxy laminates was studied via free vibration analysis. The composite laminates were manufactured by using vacuum assisted resin transfer molding technique. The damping properties of the prepared hybrid composites were determined in terms of natural frequency and damping ratio in free vibration test. The foremost aspire of this investigation was to compare the vibration properties i.e. natural frequency and modal damping of the prepared composites with the numerical results. The numerical study was carried out via FEA using $ANSYS^{TM}$ workbench software. The parametric study of the numerical models was also studied considering the beam free length and the beam thickness. It was found that the incorporation of GO enhanced the damping capacity of the composite and the variation of natural frequencies in mode1varied by 2-5% compared to the experimental study.