• 제목/요약/키워드: Structural topology

검색결과 342건 처리시간 0.027초

Topological optimized design considering dynamic problem with non-stochastic structural uncertainty

  • Lee, Dong-Kyu;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.79-94
    • /
    • 2010
  • This study shows how uncertainties of data like material properties quantitatively have an influence on structural topology optimization results for dynamic problems, here such as both optimal topology and shape. In general, the data uncertainties may result in uncertainties of structural behaviors like deflection or stress in structural analyses. Therefore optimization solutions naturally depend on the uncertainties in structural behaviors, since structural behaviors estimated by the structural analysis method like FEM need to execute optimization procedures. In order to quantitatively estimate the effect of data uncertainties on topology optimization solutions of dynamic problems, a so-called interval analysis is utilized in this study, and it is a well-known non-stochastic approach for uncertainty estimate. Topology optimization is realized by using a typical SIMP method, and for dynamic problems the optimization seeks to maximize the first-order eigenfrequency subject to a given material limit like a volume. Numerical applications topologically optimizing dynamic wall structures with varied supports are studied to verify the non-stochastic interval analysis is also suitable to estimate topology optimization results with dynamic problems.

요소제거법을 이용한 구조물 위상최적설계 (Structural Topology Optimization using Element Remove Method)

  • 임오강;이진식;김창식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.183-190
    • /
    • 2001
  • Topology optimization. has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes in many industrial parts. In recent years, topology optimization has become the focus of structural optimization design and has been researched and widely applied both in academy and industry. Traditional topology optimization has been using homogenization method and optimality criteria method. Homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time and additive checkerboard prevention algorithm is needed. In one way to solve this problem, element remove method is presented. Then, it is applied to many examples. From the results, it is verified that the time of convergence is very improved and optimal designed results is obtained very similar to the results of traditional topology using 8 nodes per element.

  • PDF

Seismic performance analysis of steel-brace RC frame using topology optimization

  • Qiao, Shengfang;Liang, Huqing;Tang, Mengxiong;Wang, Wanying;Hu, Hesong
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.417-432
    • /
    • 2019
  • Seismic performance analysis of steel-brace reinforced concrete (RC) frame using topology optimization in highly seismic region was discussed in this research. Topology optimization based on truss-like material model was used, which was to minimum volume in full-stress method. Optimized bracing systems of low-rise, mid-rise and high-rise RC frames were established, and optimized bracing systems of substructure were also gained under different constraint conditions. Thereafter, different structure models based on optimized bracing systems were proposed and applied. Last, structural strength, structural stiffness, structural ductility, collapse resistant capacity, collapse probability and demolition probability were studied. Moreover, the brace buckling was discussed. The results show that bracing system of RC frame could be derived using topology optimization, and bracing system based on truss-like model could help to resolve numerical instabilities. Bracing system of topology optimization was more effective to enhance structural stiffness and strength, especially in mid-rise and high-rise frames. Moreover, bracing system of topology optimization contributes to increase collapse resistant capacity, as well as reduces collapse probability and accumulated demolition probability. However, brace buckling might weaken beneficial effects.

SIMP를 이용한 구조물의 재료 위상 최적설계 Part II : 부분적인 솔리드 위상을 가지는 초기 설계영역 (Material Topology Optimization Design of Structures using SIMP Approach Part II : Initial Design Domain with Topology of Partial Solids)

  • 이동규;박성수;신수미
    • 한국전산구조공학회논문집
    • /
    • 제20권1호
    • /
    • pp.19-28
    • /
    • 2007
  • 이산화 된 구조물의 위상최적화 과정은 균일하게 분포된 재료 밀도의 위상으로 표현되는 초기 설계영역을 시발점으로 한다. 최적화 과정 동안 구조물의 위상은 고정된 설계영역 내에 주어진 최적화 문제를 만족시키는 방향으로 변화하면서, 최종적으로 최적 위상의 재료 밀도 분포를 생산한다. Eschenauer et al.에 의해 제안되었던 설계영역 안에 구멍을 도입하는 개념은 원래 경계면의 최적화 문제에 대해 설계변수의 유한적인 변화를 촉진시켜 최적화의 수렴성 개선을 도모하기 위함이었으나, 위상최적화의 관점에서는 초기 위상의 정의에 따라 다양한 최적 위상이 생산되는 것을 의미한다. 본 연구에서는 초기 설계영역 안에 국소적인 솔리드 상을 도입해 초기 위상에 변화를 주었을 때, 한정된 재료 하에 구조물에 배치 가능한 다양한 최적 위상을 산출할 수 있음을 검증하였다. 수치 예제로서 초기 설계영역 내에 다양한 치수를 가지는 국부적인 원형 솔리드의 고정된 개수를 투입하여 간단한 MBB-보의 위상최적 설계를 수행하였다.

분산 메모리 시스템에서의 병렬 위상 최적설계 (Parallel Topology Optimization on Distributed Memory System)

  • 이기명;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.291-298
    • /
    • 2006
  • A parallelized topology design optimization method is developed on a distributed memory system. The parallelization is based on a domain decomposition method and a boundary communication scheme. For the finite element analysis of structural responses and design sensitivities, the PCG method based on a Krylov iterative scheme is employed. Also a parallelized optimization method of optimality criteria is used to solve large-scale topology optimization problems. Through several numerical examples, the developed method shows efficient and acceptable topology optimization results for the large-scale problems.

  • PDF

구조체의 위상학적 최적화를 위한 비선형 프로그래밍 (NLP Formulation for the Topological Structural Optimization)

  • Bark, Jaihyeong;Omar N. Ghattas;Lee, Li-Hyung
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.182-189
    • /
    • 1996
  • The focus of this study is on the problem of the design of structure of undetermined topology. This problem has been regarded as being the most challenging of structural optimization problems, because of the difficulty of allowing topology to change. Conventional approaches break down when element sizes approach to zero, due to stiffness matrix singularity. In this study, a novel nonlinear Programming formulation of the topology Problem is developed and examined. Its main feature is the ability to account for topology variation through zero element sizes. Stiffness matrix singularity is avoided by embedding the equilibrium equations as equality constraints in the optimization problem. Although the formulation is general, two dimensional plane elasticity examples are presented. The design problem is to find minimum weight of a plane structure of fixed geometry but variable topology, subject to constraints on stress and displacement. Variables are thicknesses of finite elements, and are permitted to assume zero sizes. The examples demonstrate that the formulation is effective for finding at least a locally minimal weight.

  • PDF

Building structural health monitoring using dense and sparse topology wireless sensor network

  • Haque, Mohammad E.;Zain, Mohammad F.M.;Hannan, Mohammad A.;Rahman, Mohammad H.
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.607-621
    • /
    • 2015
  • Wireless sensor technology has been opened up numerous opportunities to advanced health and maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of providing relevant information regarding the condition of building structure health at a lower price. Numerous domestic buildings, especially longer-span buildings have a low frequency response and challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays an important role in providing the signals with required strengths. Out of many topologies, the dense and sparse topologies wireless sensor network were extensively used in sensor network applications for collecting health information. However, it is still unclear which topology is better for obtaining health information in terms of greatest components, node's size and degree. Theoretical and computational issues arising in the selection of the optimum topology sensor network for estimating coverage area with sensor placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise building structural health monitoring application. The result shows that, the sparse topology sensor network provides better performance compared with the dense topology network and would be a good choice for monitoring high-rise building structural health damage.

Optimizing structural topology patterns using regularization of Heaviside function

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1157-1176
    • /
    • 2015
  • This study presents optimizing structural topology patterns using regularization of Heaviside function. The present method needs not filtering process to typical SIMP method. Using the penalty formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. The regularization of discontinuous material distributions is a key scheme in order to improve the numerical problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology optimization problems.

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

개선된 진화론적 구조최적화에 의한 트러스 구조물의 형태결정 (Topology Decision of Truss Structures by Advanced Evolutionary Structural Optimization Method)

  • 정세형;편해완
    • 한국공간구조학회논문집
    • /
    • 제3권3호
    • /
    • pp.67-74
    • /
    • 2003
  • The purpose of this study is to improve convergence speed of topology optimization procedure using the existing ESO method and to deal with topology decision of the truss structures according to a boundary condition, such as cantilever type. At the existing ESO topology optimization procedure for the truss structures, the adjustment of member sizes according to target stress has been executed by increasing or reducing a very small value from each member size. In this case, it takes too much iteration till convergence. Accordingly, it is practically hard to obtain optimum topology for a large scale structures. For that reason, it is necessary to improve convergence speed of ESO method more effectively. During the topology decision procedure, member sizes are adjusted by calculating approximate solution for member sizes corresponding to the target stress at every step, the new member sizes are adjusted by such method are applied in FEA procedure of next step.

  • PDF