• Title/Summary/Keyword: Structural stress approach

Search Result 424, Processing Time 0.032 seconds

A coupled simulation of parametric porous microstructure and stress-strain behavior in mechanical components under variable cyclic loads

  • Domen Seruga;Jernej Klemenc;Simon Oman;Marko Nagode
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.409-418
    • /
    • 2023
  • A coupled algorithm is proposed which first considers the creation of porous structure of the material and then the simulations of response of mechanical components with porous structure to a variable load history. The simulations are carried out by the Prandtl operator approach in the finite element method (FEM) which enables structural simulations of mechanical components subjected to variable thermomechanical loads. Temperature-dependent material properties and multilinear kinematic hardening of the material can be taken into account by this approach. Several simulations are then performed for a tensile-compressive specimen made of a generic porous structure and mechanical properties of Aluminium alloy AlSi9Cu3. Variable mechanical load history has been applied to the specimens under constant temperature conditions. Comparison of the simulation results shows a considerable elastoplastic stress-strain response in the vicinity of pores whilst the surface of the gauge-length of the specimen remains in the elastic region of the material. Moreover, the distribution of the pore sizes seems more influential to the stress-strain field during the loading than their radial position in the gauge-length.

Topological optimized design considering dynamic problem with non-stochastic structural uncertainty

  • Lee, Dong-Kyu;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.79-94
    • /
    • 2010
  • This study shows how uncertainties of data like material properties quantitatively have an influence on structural topology optimization results for dynamic problems, here such as both optimal topology and shape. In general, the data uncertainties may result in uncertainties of structural behaviors like deflection or stress in structural analyses. Therefore optimization solutions naturally depend on the uncertainties in structural behaviors, since structural behaviors estimated by the structural analysis method like FEM need to execute optimization procedures. In order to quantitatively estimate the effect of data uncertainties on topology optimization solutions of dynamic problems, a so-called interval analysis is utilized in this study, and it is a well-known non-stochastic approach for uncertainty estimate. Topology optimization is realized by using a typical SIMP method, and for dynamic problems the optimization seeks to maximize the first-order eigenfrequency subject to a given material limit like a volume. Numerical applications topologically optimizing dynamic wall structures with varied supports are studied to verify the non-stochastic interval analysis is also suitable to estimate topology optimization results with dynamic problems.

The Effect of Nursing Students' Clinical Practice Stress, Performance Ability, Satisfaction, and Critical Thinking on Nursing Professional Self Concept (간호학생의 임상실습 스트레스, 수행능력, 만족도, 비판적 사고성향이 간호전문직 자아개념에 미치는 영향)

  • Ju, Hyeon-Jeong
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.213-224
    • /
    • 2017
  • This study was to examine the structural model of nursing student 's Professional self-concept, Critical thinking, Clinical Practice Satisfaction, Clinical competency and Clinical Practice Stress. The subjects consisted of 227 nursing students and data was collected through Structured questionnaires. Results, Critical thinking, Clinical Practice Satisfaction, Clinical competency and Clinical Practice Stress showed a direct effect on Professional self-concept for nursing students. Clinical competency and Clinical Practice Stress showed an indirect effect on nursing Professional self-concept. Clinical competency and Clinical Practice Stress showed a direct effect on Critical thinking and Clinical Practice Satisfaction. In this paper, we propose a new approach to nursing students 'self-concept in nursing. In this paper, we propose a new approach to nursing students' self-concept. And to develop and apply an intervention program that can reduce the stress of clinical practice.

An Analytical Approach to the Flight Safety of Split Yaw Swaged Rod for a Rotor Craft (회전익기 요 스웨지드 로드 분할에 따른 비행 안전성에 대한 해석적 접근)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook;Yoon, Jae-Huy;Yang, Pil-Joo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.74-80
    • /
    • 2017
  • As for A rotary wing aircraft, the configuration change about split yaw swaged rod was executed to improve hit treat capability for dealing with a long rod. The purpose of this study was to analyze if or not the quality of the split yaw swaged rod was obtained, and so the flight safety was ensured or not. Buckling analysis, Coupling Thread Strength Analysis, Thermal Stress analysis and Rod Natural Frequency Analysis were executed for structural analysis. The results of the analysis were presented that the split rod had the sufficient margin of safety and so there were no anomalies in the limit load and no failures in the ultimate load. And there were no resonances in result of natural frequency analysis. In conclusion, this study showed that the split yaw swaged rod had structural safety, so flight safety of rotary wing aircraft was secured and there was no problem in aircraft operation. It is certain that the technology of splitting the yaw swage rod will contribute to the operational Safety of the rotary wing aircraft in the future.

Analytical Approach to Compression and Shear Characteristics of the Unit Cell of PCM Core with Pyramidal Configuration (피라미드 형상의 PCM 코어 단위 셀의 압축 및 전단특성에 관한 해석적 연구)

  • Kim, S.W.;Jung, H.C.;Lee, Y.S.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.411-415
    • /
    • 2010
  • A sandwich panel which is comprised of truss cores faced with solid face sheets is lightweight and multi-functional. So it is widely used to not only structural material but also heat transfer media in transportation field such as airplane, train and vessel. There are various core topologies such as pyramidal and tetrahedral truss, square honeycombs and kagome truss. The study focused on analytical approach to optimize compression and shear quality of the unit cell of PCM with pyramidal configuration. With various unit cell models which have the same core weight per unit area but different truss member angle, analytical solution for effective stress ($\bar{\sigma},\bar{\tau}$), peak stress ($\bar{\sigma}_{peak},\bar{\tau}_{peak}$) by yielding and buckling, relative density ($\bar{\rho}_c$) and effective stiffness ($\bar{E},\bar{G}$) have been computed and compared each other. With this approach, the most optimal core configuration was predicted. The result has become the efficient guidelines for the design of PCM core structure.

Method using XFEM and SVR to predict the fatigue life of plate-like structures

  • Jiang, Zhansi;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.455-462
    • /
    • 2020
  • The hybrid method using the extended finite element method (XFEM) and the forward Euler approach is widely employed to predict the fatigue life of plate structures. Due to the accuracy of the forward Euler approach is determined by a small step size, the performance of fatigue life prediction of the hybrid method is not agreeable. Instead the forward Euler approach, a prediction method using midpoint method and support vector regression (SVR) is presented to evaluate the stress intensity factors (SIFs) and the fatigue life. Firstly, the XFEM is employed to calculate the SIFs with given crack sizes. Then use the history of SIFs as a function of either number of fatigue life cycles or crack sizes within the current cycle to build a prediction model. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Three numerical cases composed by a homogeneous plate with edge crack, a composite plate with edge crack and center crack are introduced to verify the performance of the proposed method. The results show that the proposed method enables large step sizes without sacrificing accuracy. The method is expected to predict the fatigue life of complex structures.

A unified approach to shear and torsion in reinforced concrete

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.691-703
    • /
    • 2021
  • Reinforced concrete (RC) beams can be subjected to a complex combination of shear forces (V), torsional moments (T), flexural moments (M) and axial loads (N). This paper proposes a unified approach for the analysis of these elements. An existing model for the analysis of orthogonally reinforced concrete membrane elements subjected to in-plane shear and normal stresses is generalized to apply to the case of beams subjected to the complex loading. The combination of V and T can be critical. Torsion is modelled using the hollow-tube analogy. A direct equation for the calculation of the thickness of the equivalent hollow tube is proposed, and the shear stresses caused by V and T are combined using a simple approach. The development and the evaluation of the model are described. The calculations of the model are compared to experimental data from 350 beams subjected to various combinations of stress-resultants and to the calculations of the ACI and the CSA codes. The proposed model provides the most favorable results. It is also shown that it can accurately model the interaction between V and T. The proposed model provides a unified treatment of shear in beams subjected to complex stress-resultants and in thin membrane elements subjected to in-plane stresses.

Shear Lag in Framed Tube Structures with Multiple Internal Tubes (복수의 내부 튜브를 가진 골조 튜브 구조물의 Shear Lag)

  • 이강건;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.351-360
    • /
    • 2000
  • A simple numerical modelling technique is proposed for estimating the shear lag effects of framed-tube system with multiple internal tubes. The tube(s)-in-tube structure is analysed by using an analogy approach in which each tube is individually modelled by a beam that can accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis is based on the minimum potential energy principle in conjunction with the variational approach. The shear lag phenomenon of such structures is studied with additional bending stresses. Structural parameters governing the shear lag behaviour in tube(s)-in-tube structures are also investigated through thirty-three numerical examples.

  • PDF

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.