• Title/Summary/Keyword: Structural static tests

Search Result 362, Processing Time 0.024 seconds

Assessment of a concrete arch bridge using static and dynamic load tests

  • Caglayan, B. Ozden;Ozakgul, Kadir;Tezer, Ovunc
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Assessment of a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, which is located in an earthquake-prone region in southern part of the country is presented in this study. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. By using the structural parameters obtained from the dynamic and the static tests, calibrated model of the bridge structure was obtained and this model was used for necessary calculations regarding structural assessment and evaluation.

Comparison of Structural Response of W-Beam and Thrie-Beam Guardrail System (W-Beam 및 Thrie-Beam 가아드레일 시스템의 거동 분석)

  • 고만기;김기동;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.117-124
    • /
    • 1998
  • New Thrie-Beam guardrail section has been developed. The Characteristic of its geometry, energy absorbing capability and response to impact has been studied and compared with those of conventional W-Beam guardrail system. To compare the response to impact computer simulation using Barrier Ⅶ program was made. Stretch tests and static loading tests were conducted for the performance verifications.

  • PDF

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

Sensitivity analysis of mechanical behaviors for bridge damage assessment

  • Miyamoto, Ayaho;Isoda, Satoshi
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.539-558
    • /
    • 2012
  • The diagnosis of bridge serviceability is carried out by a combination of in-situ visual inspection, static and dynamic loading tests and analyses. Structural health monitoring (SHM) using information technology and sensors is increasingly being used for providing a better estimate of structural performance characteristics rather than above traditional methods. Because the mechanical behavior of bridges with various kinds of damage can not be made clear, it is very difficult to estimate both the damage mode and degree of damage of existing bridges. In this paper, the sensitivity of both static and dynamic behaviors of bridges are studied as a measure of damage assessment through experiments on model bridges induced with some specified artificial damages. And, a method of damage assessment of bridges based on those behaviors is discussed in detail. Finally, based on the results, a possible application for structural health monitoring systems for existing bridges is also discussed.

Structural Static Test for Validation of Structural Integrity of Fuel Pylon under Flight Load Conditions (비행하중조건에서 연료 파일런의 구조 건전성 검증을 위한 구조 정적시험)

  • Kim, Hyun-gi;Kim, Sungchan;Choi, Hyun-kyung;Hong, Seung-ho;Kim, Sang-Hyuck
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-103
    • /
    • 2022
  • An aircraft component can only be mounted on an aircraft if it has been certified to have a structural robustness under flight load conditions. Among the major components of the aircraft, a pylon is a structure that connects external equipment such as an engine, and external attachments with the main wing of an aircraft and transmits the loads acting on it to the main structure of the aircraft. In civil aircraft, when there is an incident of fire in the engine area, the pylon prevents the fire from spreading to the wings. This study presents the results of structural static tests performed to verify the structural robustness of a fuel pylon used to mount external fuel tank in an aircraft. In the main text, we present the test set-up diagram consisting of test fixture, hydraulic pressure unit, load control system, and data acquisition equipment used in the structure static test of the fuel pylon. In addition, we introduce the software that controls the load actuator, and provide a test profile for each test load condition. As a result of the structural static test, it was found that the load actuator was properly controlled within the allowable error range in each test, and the reliability of the numerical analysis was verified by comparing the numerical analysis results and the strain obtained from the structural test at the main positions of the test specimen. In conclusion, it was proved that the fuel pylon covered in this study has sufficient structural strength for the required load conditions through structural static tests.

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.

Development of Full-Scale Static Test System for Aircraft Sensor Pod (항공용 센서 포드의 정적 구조시험장비 개발)

  • Jae Myung Cho;Hoon Hyuk Park;Won Woong Lee;Jong In Bae;Han Sol Lee;Eui Hwan Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • For aviation sensor pod, structural integrity should be verified through static structural tests for flight loads induced in various maneuvering conditions of the aircraft. For this, it is necessary to develop a test system for full-scale static load test of sensor pod. Based on test requirements, this paper introduced a test system configuration of the static test and the development of test structure frame, restraints equipment, loading equipment, control, and measurement equipment. In addition, methods and procedures for verifying the developed test system were explained. In conclusion, the static load test and data acquisition were successfully performed. Reliability of the test equipment was also verified in the process.

Evaluation of structural strength for Composite Carbody of Tilting Train (복합재 틸팅열차 차체 구조물의 구조강도 평가)

  • Jeong, Jong-Cheol;Lee, Sang-Jin;Cho, Sea-Hyun;Kim, Jung-Seok;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.199-202
    • /
    • 2005
  • This study has performed the static loading tests for the composite train body of Korean tilting train. The structural tests based on the JIS E7105 standard were carried out in the test facility designed for the train carbody. The vertical, compressive and torsional loads were imposed on the underframe and the end structure of the carbody. the structural behavior of the carbody under the 3-point supporting and the natural frequency were evaluated as well. In addition, the test results were compared with the numerical one. From the tests. the structural strength of the hybrid composite carbody was assessed.

  • PDF

Evaluation of Static Structural Integrity for Composites Wing Structure by Acoustic Emission Technique (음향방출법을 응용한 복합재 날개 구조물의 정적구조 건전성 평가)

  • Jun, Joon-Tak;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.780-788
    • /
    • 2009
  • AE technique was applied to the static structural test of the composite wing structure to evaluate the structural integrity and damage. During the test, strain and displacements measurement technique were used to figure out for static structural strength. AE parameter analysis and source location technique were used to evaluate the internal damage and find out damage source location. Design limit load test, the 1st and 2nd design ultimate load tests and fracture test were performed. Main AE source was detected by an sensor attached on skin near by front lug. Especially, at the 1st design ultimate test, strain and displacements results didn't show internal damage but AE signal presented a phenomenon that the internal damage was formed. At the fracture test, AE activities were very lively, and strain and displacements results showed a tendency that the load path was changed by severe damage. The internal damage initiation load and location were accurately evaluated during the static structural test using AE technique. It is certified from this paper that AE technique is useful technique for evaluation of internal damage at static structural strength test.

Damage inspection and performance evaluation of Jilin highway double-curved arch concrete bridge in China

  • Naser, Ali Fadhil;Zonglin, Wang
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.521-539
    • /
    • 2011
  • Jilin highway concrete bridge is located in the center of Jilin City, which is positioned in the middle part in Jilin Province in the east north of China. This bridge crosses the Songhua River and connects the north and the south of Jilin City. The main purpose of damages inspection of the bridge components is to ensure the safety of a bridge and to identify any maintenance, repair, or strengthening which that need to be carried out. The damages that occur in reinforced concrete bridges include different types of cracks, scalling and spalling of concrete, corrosion of steel reinforcement, deformation, excessive deflection, and stain. The main objectives of this study are to inspect the appearance of Jilin highway concrete bridge and describe all the damages in the bridge structural members, and to evaluate the structural performance of the bridge structure under dead and live loads. The tests adopted in this study are: (a) the depth of concrete carbonation test, (b) compressive strength of concrete test, (c) corrosion of steel test, (d) static load test, and (e) dynamic load test. According to the damages inspection of the bridge structure appearance, most components of the bridge are in good conditions with the exception arch waves, spandrel arch, deck pavement of new arch bridge, and corbel of simply supported bridge which suffer from serious damages. Load tests results show that the deflection, strain, and cracks development satisfy the requirements of the standards.