• Title/Summary/Keyword: Structural static tests

Search Result 362, Processing Time 0.023 seconds

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J;Kong, C;Soutis C.
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.66-73
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests. CAI strength and open hole compressive strength tests using 3 mm thick composite plates($[45/-45/0/90]_{3s}$- IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels(between 5.4 J and 18.7 J) follow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. It is identified that the failure behaviour of the specimens from the CAI strength tests was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths art: in good agreement with the measured open hole compressive strengths. considering the impact damage site area, an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

Static Behavior of Concrete-Filled and Tied Steel Tubular Arch(CFTA) Girder (CFTA거더의 정적 거동연구)

  • Kim, Jong-In;Kim, Doo-kie;Lee, Jang-hyeong;Kim, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.225-231
    • /
    • 2009
  • This study introduces the CFTA girder(Concrete-Filled and Tied Steel Tubular Arch Girder) which is a combined structural system of traditional CFT, arch, and prestress structures. Static load tests and structural behavior analyses were carried out for a 25m long CFTA girder. In the analysis, each load of 58kN, 88kN, 148kN, 207kN,and 298kN was applied incrementally at the positions of 1.0 m distances in both directions from the center of the girder. On each test, strain and displacement were measured. Linear static FEM analyses using Strand7 code were also performed to check the structural stability and to investigate the effects of prestressing(${\pm}$20%) and material property(Young's modulus) on the displacement and strain. The results of this study are summarized as follows: the initial strain & displacement under selfweight and prestressing were influenced with the variation of prestressing, but they were mainly effected only by Young's modulus when additional loads were applied.

High Strain Rate Compression Behavior of EPP Bumper Foams (변형률 속도에 따른 EPP Foam의 대변형 동적 압축 특성에 관한 연구)

  • Choi, Ki-Sang;Kang, Woo-Jong;Kim, Gi-Hoon;Kim, Seong-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.118-125
    • /
    • 2009
  • Bumper is designed to protect the automotive frame without damage at low velocity. Expanded polypropylene (EPP) foam is used in the bumper as an energy absorbing material. In order to exactly predict the energy absorbing performance of the foam material under impact loading condition, it is important to use high strain rate material properties. In this study, a new apparatus for dynamic compression tests was developed to investigate the high strain rate behavior of EPP foams. Three kinds of EPP foams which have different expansion ratios were tested to investigate the quasi-static and dynamic compression behavior. Quasi-static compressions were performed at low strain rates of 0.001/s, 0.1/s and 1/s. The dynamic compressions were carried out at high strain rates of 50/s and 100/s with the developed apparatus. It was observed that the EPP foam has significant strain rate effect as compared to quasi-static behavior.

Static Strength of Cramp Joint at Precast Highway Deck Slabs (프리캐스트 바닥판용 클램프 조인트의 정적내하력)

  • Kim, Yoon-Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.187-193
    • /
    • 2006
  • A new jointing method using steel cramps with a unique configuration was developed for the field joint of precast deck slabs of highway bridges. In this jointing method, the looped distribution bars are connected by the cramps to the main reinforcements. Therefore, the joint can transfer the bending moment and shearing force through the interlocking effect caused by the cramps, and it is both excellent in installation on-site and economical compared with the loop joint currently in use. In order to confirm the bending and shear capacities and to clarify the failure mechanism of the joint, a series of static loading tests were carried out. From the results of these experimental studies, it was clarified that the cramp joint has enough load carrying capacity being equivalent to the loop joint.

A Study on the Prediction Fatigue Life of Two-Span Beams with Steel Fibrous (강섬유를 혼입한 2경간 연속보의 피로수명 예측에 관한 연구)

  • 곽계환;김원태;이진성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.375-382
    • /
    • 2001
  • This study is attempted to predict experimentally the fatigue crack propagation behavior of two-span beams with steel fibrous for various steel fibrous contents. The static tests and the fatigue tests were performed on a series of SFRC(steel fibrous reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fibrous contents. Through this test, the diagonal cracking loads, ultimate loads, deflections, strains of concrete and steels. Fatigue crack length were measured by the eye-observation. As a result of test, A model for S-N relationship, and propagation life of fatigue crack of SFRC was proposed. The crack growth and failure of SFRC beams were studied.

  • PDF

Static and Dynamic Analysis of Plate Structures using an Enhanced Finite Element (개선된 유한요소를 이8한 평판구조물의 정적 및 동적해석)

  • 김선훈;한인선;유승운;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.169-176
    • /
    • 2002
  • This paper is concerned with development of an enhanced quadratic Mindlin plate bending element. The behavior of the proposed plate element is further improved by the coupled use of non-conforming displacement modes, the selectively reduced integration scheme, and the assumed shear strain fields. The improvement may be attributable to the fact that the merits of these improvement techniques are merged in the formation of the new element in a complementary manner. The proposed quadratic finite element passes the patch tests, does not show spurious mechanism, and does not produce shear locking phenomena even with distorted meshes. It is shown that the element produces reliable solutions through numerical tests for standard benchmark problems. It is also noted that the element is applicable to transient dynamic analysis of Mindlin plates.

  • PDF

Structural Tests for Effects of Intermediate Diaphragms in Concrete Girder Bridge (콘크리트 거더 교량의 중간격벽에 대한 구조실험)

  • 이규정;정원기;이재훈;강희철;이호근;이재혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.903-908
    • /
    • 2000
  • The role of intermediate diaphragms in concrete girder bridge was studied by structural tests about 1/2 scale model of the typical design. The purpose of this research is understanding of the role of intermediate diaphragms which has been misused by vertical load distribution and misunderstood by design specification. Experimental variables included : location and number of intermediate diaphragms which were made by reinforced concrete or steel. Service load was applied the structure under static loads. Numerical analysis of the test bridge using solid element of finite element method was verified by comparison with the experimental results. Based on the results, in no case was an appreciable reduction in terms of vertical deflection.

Strain Characteristics of a 75 tonf-class Engine for Ground Firing Test (75톤급 엔진 지상 연소 시험 변형율 특성)

  • Yoo, Jaehan;Kim, Jinhyuk;Jeon, Seongmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.126-133
    • /
    • 2018
  • A liquid rocket engine experiences various static loads in flight, such as high pressures due to propellents, thrust and thermal loads due to cryogenic liquid oxygen and combustion gas with extreme vibration. During the engine development stage, structural analyses and investigation on the strain measured from ground firing tests are necessary for determining the structural reliability of the engine. In this study, the strain characteristics, obtained from the ground firing tests of a 75 tonf-class engine, were analyzed.

Static and dynamic responses of a tied-arch railway bridge under train load

  • Gou, Hongye;Yang, Biao;Guo, Wei;Bao, Yi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, the static and dynamic responses of a tied-arch railway bridge under train load were studied through field tests. The deflection and stresses of the bridge were measured in different static loading scenarios. The dynamic load test of the bridge was carried out under the excitation of running train at different speeds. The dynamic properties of the bridge were investigated in terms of the free vibration characteristics, dynamic coefficients, accelerations, displacements and derailment coefficients. The results indicate that the tie of the measuring point has a significant effect on the vertical movement of the test section. The dynamic responses of arch bridge are insensitive to the number of trains. The derailment coefficients of locomotive and carriage increase with the train speed and symmetrically distributed double-line loads reduce the train derailment probability.

Development and experimental study on cable-sliding modular expansion joints

  • Gao, Kang;Yuan, Wan C.;Dang, Xin Z.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.795-806
    • /
    • 2017
  • According to the characteristics of continuous beam bridges, the relative displacement is too large to collision or even girder falling under earthquakes. A device named Cable-sliding Modular Expansion Joints(CMEJs) that can control the relative displacement and avoid collision under different ground motions is proposed. Working principle and mechanical model is described. This paper design the CMEJs, establish the restoring force model, verify the force model of this device by the pseudo-static tests, and describe and analyze results of the tests, and then based on a triple continuous beam bridge that has different heights of piers, a 3D model with or without CMEJs were established under Conventional System (CS) and Seismic Isolation System (SIS). The results show that this device can control the relative displacement and avoid collisions. The combination of isolation technology and CMEJs can be more effective to achieve both functions, but it need to take measures to prevent girder falling due to the displacement between pier and beam under large earthquakes.