• Title/Summary/Keyword: Structural safety test

Search Result 936, Processing Time 0.026 seconds

Burst Test of Cast Al-Alloy Casing for Liquid Rocket Engine Turbopump (액체로켓엔진 터보펌프 알루미늄합금 주조케이싱 파열시험)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.616-623
    • /
    • 2012
  • Turbopump is a key component in liquid rocket engines, and reducing weight while maintaining structural safety is one of the major concerns of turbopump designers. To reduce the weight aluminium alloy castings instead of steel casings are introduced. The casting process is especially useful for enhancement of productivity and for reduction of product costs. But, since castings are used in space vehicle engines, reliability cannot be compromised therefore proper design, production process and thorough investigation should be performed to ensure structural integrity. In this study inlet casings for a fuel pump are casted with A356.0-T6 alloy and using one of them a burst test is conducted to ensure structural integrity. Structural analysis is performed for simulation, and with multiple strain gages strains are measured and compared with predictions.

  • PDF

Evaluation of Total Serviceable Life of Bogie Frame of Electric Multiple Unit by Dynamic Strain Measurement (실동응력 측정을 통한 전동차 대차프레임의 내구수명 평가)

  • Kim, Seung-Sub;Han, Seong-Uk;Park, Geun-Soo;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.277-282
    • /
    • 2011
  • Bogie frame is typical safety part of railway vehicle. Total serviceable life of bogie frame will be evaluated by Cumulative Damage Approach Method that is defined by dynamic strain measurement during revenue service under the actual track conditions. As a result of the standardization process developed in British Standard Institution, BS 7608 defines for fatigue design and test method of steel structure by fatigue test results over the long period. This paper evaluates the total serviceable life applying BS 7608 for the bogie frame of Electric Multiple Unit to verify structural safety of the bogie frame.

  • PDF

Study on Characteristic of Flex-PLI for the Pedestrian Protection and Countermeasure for Compact Vehicles (보행자보호 시험용 Flex-PLI의 특성 및 소형차 대응 구조 연구)

  • Kim, Yong Jae;Jin, Wook;Kim, Dong Sun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.11-16
    • /
    • 2012
  • In 2014 Flex-PLIfor the pedestrian protection will be applied to NCAP test. The most significant feature of Flex-PLI is constructed with segmental bone cores for the femur and tibia regions. So it can be more reproducible by representing pedestrian injuries such as knee ligament and tibia injury during the pedestrian crash against vehicle. In this paper, Analyzed the characteristics of Flex-PLI through the structural analysis and the test results by using Flex-PLI for our compact vehicles. Finally countermeasures into compact vehicle were proposed to fulfill the injury criteria of Flex-PLI.

Emergency Blockage Application of Engine Part for Integrated Propulsion Performance Test (추진시스템 종합성능시험에서의 엔진부 비상정지 설정)

  • 하성업;이정호;권오성;김병훈;강선일;한상엽
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.171-176
    • /
    • 2003
  • A Test Facility was established to carry out the integrated propulsion performance tests(IPPT). To perform IPPT's with maximum safety, an emergency blockage system was investigated. An emergency blockage system using combustion chamber pressure and acceleration signals was set up to monitor ignition delay and fail, flame out, propellant feeding status, unstable combustion and excessive structural vibration. With such system, the maximum safety could be secured by rapid judgement and follow-up measures, which made IPPT's be safely completed.

  • PDF

The Influence of Impact Angle on Hip Fracture in Fallings

  • Choi, Jae-Bong
    • International Journal of Safety
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The direction of the applied load and displacement rate on the femur during falls may be an important factors in the etiology of hip fractures. Nonetheless, previous studies did not consider these two factors simultaneously for falling condition. Therefore, in the present study, an impact test system is developed to simulate the falling condition and the influence of impact angle on the deformation pattern changes of proximal femur is investigated. The results showed that a slight variation in impact angle quite affects deformation pattern of the proximal femur. Along with bone mineral density and trabaecular morphology, the impact angle can be another important factor affecting the structural capacity of the proximal femur.

Structural Strength Analysis and Static Load Test of a Wheelset of Korean High Speed Rail for Measuring Whee/Rail Force (한국형 고속철도차량의 차륜/궤도 작용력 측정을 위한 윤축의 구조강도 해석 및 정하중 시험)

  • 전응식;함영삼;허현무;강부병
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.898-903
    • /
    • 2002
  • The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more inportant in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, its finite element analysis, adhesion of strain gauges and static load test.

  • PDF

Evaluation of the Load Carrying Capacity of Existing Bridges with Long Span Hollow Web Prestressed Concrete Girder by Static Load Test (정적재하시험을 통한 장경간 중공 웨브 PSC 거더교의 내하력 평가)

  • Kim, Seong-Kyum;Jang, Pan-Ki;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2018
  • Conventional PSC I type girders were adversely affected by the self - weight of concrete, anchorage, prestressing. In order to overcome this problem, PSC girder was constructed with a hollow in the web and developed a hollow web PSC type I girder which is applicable to 50 - 70m span by multistage stressing and then actually long span hollow web PSC girder bridge was constructed. In this study, the results of Static Load Test and the Finite Element Analysis of the hollow web PSC I girder bridges were compared and analyzed, and the Load Carrying Capacity and safety of PSC girder bridges were evaluated. The Static Load Test and the numerical analysis results of this bridge showed similar tendency and the behavior of the hollow web PSC I girder was well simulated. The entire girders of the bridges had sufficient Load Carrying Capacity under the live load design condition and the bridges satisfied the safety and confirmed the appropriateness of the construction.

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

Strength Assessment of 8m-class High-Speed Planing Leisure Boat (8m급 고속 활주선형 레저보트의 구조강도 평가)

  • Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.418-423
    • /
    • 2018
  • Recently, research and development of high-value leisure vessels has been carried out in Korea to revitalize the marine leisure industry and tap into the global maritime leisure market. FRP composite materials, which have excellent physical properties and are available for the manufacture of light hulls, are used widely. One of the most important design technologies is to secure structural safety of leisure vessels made from FRP composite materials. In this study, the structural strength was assessed for the design of an 8-meter high-speed planing leisure boat made from FRP composite materials. The design loads to verify the structural safety were calculated according to the rules for the classification of high speed light craft (KR, 2015), and structural analysis was conducted using a finite element model composed of an isotropic shell element, which has equivalent bending rigidity with the FRP sandwich panel. The analysis results were compared with the results of the strength test for fabricated specimens, and all internal structural components are sufficiently satisfied with the structural strength.

Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method

  • Li, Yong;Zhou, Hao;Dong, Zhenxing;Zhu, Weishen;Li, Shucai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.271-281
    • /
    • 2018
  • A jointed rock slope stability evaluation was simulated by a discontinuous deformation analysis numerical method to investigate the process and safety factors for different crack distributions and different overloading situations. An optimized method using Discontinuous Deformation Analysis for Rock Failure (DDARF) is presented to perform numerical investigations on the jointed rock slope stability evaluation of the Dagangshan hydropower station. During the pre-processing of establishing the numerical model, an integrated software system including AutoCAD, Screen Capture, and Excel is adopted to facilitate the implementation of the numerical model with random joint network. These optimizations during the pre-processing stage of DDARF can remarkably improve the simulation efficiency, making it possible for complex model calculation. In the numerical investigations on the jointed rock slope stability evaluations using the optimized DDARF, three calculation schemes have been taken into account in the numerical model: (I) no joint; (II) two sets of regular parallel joints; and (III) multiple sets of random joints. This model is capable of replicating the entire processes including crack initiation, propagation, formation of shear zones, and local failures, and thus is able to provide constructive suggestions to supporting schemes for the slope. Meanwhile, the overloading numerical simulations under the same three schemes have also been performed. Overloading safety factors of the three schemes are 5.68, 2.42 and 1.39, respectively, which are obtained by analyzing the displacement evolutions of key monitoring points during overloading.