• Title/Summary/Keyword: Structural safety test

Search Result 941, Processing Time 0.026 seconds

Strength Assessment of High-Pressure Ball Valve for Topside Process Unit (해양플랜트 탑사이드용 고압 볼밸브에 대한 구조 안전성 평가)

  • Oh, Jeong-Sik;Kim, Yooil;Jeong, Nakshin;Kim, Sangmyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.100-108
    • /
    • 2016
  • A high-pressure ball valve was developed, and both the structural strength and sealing performance were assessed based on a nonlinear finite element analysis. Different parts were modeled with solid elements and assembled, taking into account both contact and sliding effects. Three different loading scenarios were analyzed, including a high-pressure closure test and fire and shell test conditions. The structural safety of each part was checked under each loading condition, and the sealing performance was also investigated to validate the performance of the valve.

Structural Response of Reinforced Concrete Beams Strengthened with CERP Rod

  • Moon Do-Young;Sim Jong-Sung;Oh Hong-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1085-1090
    • /
    • 2005
  • Rod-type fiber reinforced polymer plastics(FRPs) similar to reinforcing steel bars have rarely been considered. In this study, an experiment was performed using beams strengthened with rod-type CFRPs and high-strength mortar overlay. The test results show that the strengthened beams not only had improved endurance limits but also improved load carrying capacities, stiffness values, and cracking loads as compared to a non-strengthened beam. Strengthened beams anchored with bolts throughout their entire span had more efficient structural behaviors, including composite behavior on the interface between the concrete and mortar, and load carrying capacity, than a strengthened beam anchored only on the end block.

A Vehicle SoC Fault Diagnosis Technique using FlexRay Protocol

  • Kang, Seung-Yeop;Jung, Ji-Hun;Park, Sung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose vehicle SoC fault diagnosis platform using FlexRay protocol in order to detect the faults of semiconductor control chip even after vehicle production. Before FlexRay protocol by sending NFI (Null Frame Indicator) bit among the header segment and a specific identifier in the payload segment of FlexRay frame, this technique can be distinguishable from normal mode and test mode. By using this technique, it is possible to detect the faults such as performance degradation of vehicle network system caused by the aging or several problems of vehicle semiconductor chip. Also high reliability and safety of vehicle can be maintained by using structural test for vehicle SoC fault detection.

Theoretical and experimental investigation of piezoresistivity of brass fiber reinforced concrete

  • Mugisha, Aurore;Teomete, Egemen
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.399-408
    • /
    • 2019
  • Structural health monitoring is important for the safety of lives and asset management. In this study, numerical models were developed for the piezoresistive behavior of smart concrete based on finite element (FE) method. Finite element models were calibrated with experimental data collected from compression test. The compression test was performed on smart concrete cube specimens with 75 mm dimensions. Smart concrete was made of cement CEM II 42.5 R, silica fume, fine and coarse crushed limestone aggregates, brass fibers and plasticizer. During the compression test, electrical resistance change and compressive strain measurements were conducted simultaneously. Smart concrete had a strong linear relationship between strain and electrical resistance change due to its piezoresistive function. The piezoresistivity of the smart concrete was modeled by FE method. Twenty-noded solid brick elements were used to model the smart concrete specimens in the finite element platform of Ansys. The numerical results were determined for strain induced resistivity change. The electrical resistivity of simulated smart concrete decreased with applied strain, as found in experimental investigation. The numerical findings are in good agreement with the experimental results.

Temporary Arch Bridges Assembled by Snap-fit GFRP Decks and Bolts (첨단복합소재 데크를 볼트결합한 조립식 아치가교의 거동분석)

  • Hong, Kee-Jeung;Lee, Sung-Woo;Choi, Sung-Ho;Khum, Moon-Seoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.247-254
    • /
    • 2010
  • Due to lightweight and high durability of glass-fiber reinforced polyester (GFRP) materials, they are promising alternatives to conventional construction materials such as steel, concrete and wood. As good application examples of GFRP materials, several types of temporary arch bridges were suggested and verified by finite element analyses in our previous study where snap-fit GFRP decks were applied. In this paper, we conduct a structural performance test to verify safety and serviceability of the temporary arch bridge, where snap-fit GFRP decks are assembled by bolts. The structural problems occurred in this test are also discussed and improvement of temporary arch bridges is suggested to resolve the occurred structural problems.

Efficient determination of combined hardening parameters for structural steel materials

  • Han, Sang Whan;Hyun, Jungho;Cho, EunSeon;Lee, Kihak
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.657-669
    • /
    • 2022
  • Structural materials can experience large plastic deformation under extreme cyclic loading that is caused by events like earthquakes. To evaluate the seismic safety of a structure, accurate numerical material models should be used. For a steel structure, the cyclic strain hardening behavior of structural steel should be correctly modeled. In this study, a combined hardening model, consisting of one isotropic hardening model and three nonlinear kinematic hardening models, was used. To determine the values of the combined hardening model parameters efficiently and accurately, the improved opposition-based particle swarm optimization (iOPSO) model was adopted. Low-cycle fatigue tests were conducted for three steel grades commonly used in Korea and their modeling parameters were determined using iOPSO, which was first developed in Korea. To avoid expensive and complex low cycle fatigue (LCF) tests for determining the combined hardening model parameter values for structural steel, empirical equations were proposed for each of the combined hardening model parameters based on the LCF test data of 21 steel grades collected from this study. In these equations, only the properties obtained from the monotonic tensile tests are required as input variables.

Reliability Analysis of Steel Fiber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 신뢰성 해석)

  • 유한신;곽계환;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.479-486
    • /
    • 2004
  • The purpose of this study is to practical use with increase safety, usablility and economical. In this study, the property of fatigue behavior was tested by comparing reinforced concrete and steel fiber reinforced concrete. The basic test, the static test and fatigue test were used as the research methods. Basic on the test, the material compressive strength test and split tensile strength test ware conducted 7 days and 28 days after the concrete was poured. In the static test, there ware four types of experimental variables of the steel fiber mixing ratio : 0.00%, 0.75%, 1.00%, and 1.25%. The ultimate load initial diagonal tension crack, and initial load of flexural cracking were all observed by static test. A methodology for the probabilistic assement of steel fiber reinforced concrete(SFRC) which takes into account material variability, confinement model uncertainty and the uncertainty in local and globa failure criteria is applied for the derivation of vulnerability curves for the serviceability and ultimate limit states, the reliability of SFRC using the proposed practical linear limit state model is evaluated by using the AFOSM(Advanced First Order Second Moment) method and MCS(monte-Calrosimulation) method.

  • PDF

A Study on the Structural Behavior and Safety Evaluation based on Field Measurement Value of Launching Truss (런칭 트러스의 안전성 평가 및 실측치에 기초한 구조거동에 관한 연구)

  • Park, Young Hoon;Lee, Seung Yong;Jeon, Jun Chang;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.383-391
    • /
    • 1998
  • Launching truss used for constructing the precast segmental concrete bridge has upper chord, lower chord and diagonal members. And the pin is used for connecting these members. From the field loading test carried out for investigating the actual behavior of launching truss, the great difference is analyzed between measured stress and calculated stress. Based on measured value, the structural analysis are carried out about assumed abnormal behavior of connection part. From the results of analysis, it is analyzed that the abnormal behavior of connection part greatly affect the structural behavior of launching truss. In addition, from the investigation of safety of launching truss, it is evaluated that the launching truss has enough safety with normal behavior of connection part.

  • PDF

Structural Performance Evaluation of a Precast PSC Curved Girder Bridge Constructed Using Multi-Tasking Formwork

  • Kim, Sung-Jae;Kim, Jang-Ho Jay;Yi, Seong-Tae;Noor, Norhazilan Bin Md;Kim, Sung-Chul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.1-17
    • /
    • 2016
  • Recently, advanced transit systems are being constructed to reduce traffic congestions in metropolitan areas. For these projects, curved bridges with various curvatures are required. Many curved bridges in the past were constructed using aesthetically unpleasant straight beams with curved slabs or expensive curved steel box girders with curved slabs. Therefore, many recent studies have been performed to develop less expensive and very safe precast prestressed concrete (PSC) curved girder. One method of reducing the construction cost of a PSC curved girder is to use a reusable formwork that can easily be adjusted to change the curvature and length of a girder. A reusable and curvature/dimension adjustable formwork called Multi-tasking formwork is developed for constructing efficient precast PSC curved girders. With the Multi-tasking formwork, two 40 m precast PSC box girders with different curvatures were constructed to build a two-girder curved bridge for a static flexural test to evaluate its safety and serviceability performance. The static flexural test results showed that the initial cracking load was 1400 kN, exceeding the design cracking load of 450 kN. Also, the code allowed deflection of 50 mm occurred at a load of 1800 kN, verifying the safety and serviceability of the precast PSC curved bridge constructed using the multi-tasking formwork.

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.