• Title/Summary/Keyword: Structural robustness

Search Result 319, Processing Time 0.025 seconds

An inverse approach based on uniform load surface for damage detection in structures

  • Mirzabeigy, Alborz;Madoliat, Reza
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.233-242
    • /
    • 2019
  • In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find minimum value yields damage's parameters detection. The teaching-learning based optimization algorithm has been employed to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. By comparison between proposed objective function and another objective function which make use of natural frequencies and mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate that the proposed method is reliable technique to damage detection in structures.

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

Resilience against Adversarial Examples: Data-Augmentation Exploiting Generative Adversarial Networks

  • Kang, Mingu;Kim, HyeungKyeom;Lee, Suchul;Han, Seokmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4105-4121
    • /
    • 2021
  • Recently, malware classification based on Deep Neural Networks (DNN) has gained significant attention due to the rise in popularity of artificial intelligence (AI). DNN-based malware classifiers are a novel solution to combat never-before-seen malware families because this approach is able to classify malwares based on structural characteristics rather than requiring particular signatures like traditional malware classifiers. However, these DNN-based classifiers have been found to lack robustness against malwares that are carefully crafted to evade detection. These specially crafted pieces of malware are referred to as adversarial examples. We consider a clever adversary who has a thorough knowledge of DNN-based malware classifiers and will exploit it to generate a crafty malware to fool DNN-based classifiers. In this paper, we propose a DNN-based malware classifier that becomes resilient to these kinds of attacks by exploiting Generative Adversarial Network (GAN) based data augmentation. The experimental results show that the proposed scheme classifies malware, including AEs, with a false positive rate (FPR) of 3.0% and a balanced accuracy of 70.16%. These are respective 26.1% and 18.5% enhancements when compared to a traditional DNN-based classifier that does not exploit GAN.

Experimental study on the effect of EC-TMD on the vibration control of plant structure of PSPPs

  • Zhong, Tengfei;Feng, Xin;Zhang, Yu;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.457-473
    • /
    • 2022
  • A high-frequency vibration control method is proposed in this paper for Pumped Storage Power Plants (PSPPs) using Eddy Current Tuned Mass Damper (EC-TMD), based on which a new type of EC-TMD device is designed. The eddy current damper parameters are optimized by numerical simulation. On this basis, physical simulation model tests are conducted to compare and study the effect of structural performance with and without damping, different control strategies, and different arrangement positions of TMD. The test results show that EC-TMD can effectively reduce the control effect under high-frequency vibration of the plant structure, and after the additional damping device forms EC-TMD, the energy dissipation is further realized due to the intervention of eddy current damping, and the control effect is subsequently improved. The Multi-Tuned Mass Damper (MTMD) control strategy broadens the tuning band to improve the robustness of the system, and the vibration advantage is more obvious. Also, some suggestions are made for the placement of the dampers to promote their application.

Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp (형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발)

  • Sin, Minki;Cho, Jang Ho;Woo, Hyun Soo;Kim, Kiyoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

Importance Assessment of Multiple Microgrids Network Based on Modified PageRank Algorithm

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This paper presents a comprehensive scheme for assessing the importance of multiple microgrids (MGs) network that includes distributed energy resources (DERs), renewable energy systems (RESs), and energy storage system (ESS) facilities. Due to the uncertainty of severe weather, large-scale cascading failures are inevitable in energy networks. making the assessment of the structural vulnerability of the energy network an attractive research theme. This attention has led to the identification of the importance of measuring energy nodes. In multiple MG networks, the energy nodes are regarded as one MG. This paper presents a modified PageRank algorithm to assess the importance of MGs that include multiple DERs and ESS. With the importance rank order list of the multiple MG networks, the core MG (or node) of power production and consumption can be identified. Identifying such an MG is useful in preventing cascading failures by distributing the concentration on the core node, while increasing the effective link connection of the energy flow and energy trade. This scheme can be applied to identify the most profitable MG in the energy trade market so that the deployment operation of the MG connection can be decided to increase the effectiveness of energy usages. By identifying the important MG nodes in the network, it can help improve the resilience and robustness of the power grid system against large-scale cascading failures and other unexpected events. The proposed algorithm can point out which MG node is important in the MGs power grid network and thus, it could prevent the cascading failure by distributing the important MG node's role to other MG nodes.

Steel Module-to-Concrete Core Connection Methods in High Rise Modular Buildings: A Critical Review

  • Poudel, Bishal;Lee, Seungtaek;Choi, Jin Ouk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.571-578
    • /
    • 2022
  • Modularization in a high-rise building is different from a small building, as it is exposed to more lateral forces like wind and earthquakes. The integrity, robustness, and overall stability of the modules and their performance is based on the joining techniques and strong structural systems. High lateral stiff construction structures like concrete shear walls and frames, braced steel frames, and steel moment frames are used for the stability of high-rise modular buildings. Similarly, high-rise stick-built buildings have concrete cores and perimeter frames for lateral load strength and stiffness. Methods for general steel-concrete connections are available in many works of literature. However, there are few modular-related papers describing this connection system in modular buildings. This paper aims to review the various research and practice adopted for steel-to-concrete connections in construction and compare the methods between stick-built buildings and modular buildings. The literature review shows that the practice of steel module-to-concrete core connection in high-rise modular buildings is like outrigger beams-to-concrete core connection in stick-built framed buildings. This paper concludes that further studies are needed in developing proper guidelines for a steel module-to-concrete core connection system in high-rise modular buildings.

  • PDF

New method environment for art design of nanocomposite brick facade of the building

  • Jie Xia;Gholamreza Soleimani Jafari;F. Ghoroughi
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.499-507
    • /
    • 2024
  • The paper delves into an emerging paradigm shift in architectural design, focusing on the development of a cutting-edge methodological framework for the artistic enhancement of nanocomposite brick facades in building construction. This innovative approach represents a fusion of art and science, harnessing the potential of advanced nanotechnology to redefine the aesthetic and functional properties of building exteriors. Central to this new methodology is the integration of state-of-the-art materials and fabrication techniques, aimed at not only elevating the visual appeal of architectural structures but also enhancing their structural robustness and environmental sustainability. By leveraging the unique characteristics of nanocomposite materials, the proposed method opens up new possibilities for pushing the boundaries of traditional brick facade design. Through a meticulous exploration of the intricacies involved in implementing this novel approach, the paper elucidates the transformative impact it can have on the architectural landscape. By marrying creativity with technical precision, the method environment for art design of nanocomposite brick facades promises to usher in a new era of sustainable, visually captivating, and structurally resilient building facades that are poised to redefine the very essence of architectural aesthetics.

Real-time Health Monitoring of Pipeline Structures Using Piezoelectric Sensors (압전센서를 사용한 배관 구조물의 실시간 건전성 평가)

  • Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2010
  • Pipeline structure is one of core underground infrastructure which transports primary sources. Since the almost pipeline structures are placed underground and connected each other complexly, it is difficult to monitor their structural health condition continuously. In order to overcome this limitation of recent monitoring technique, recently, a Ubiquitous Sensor Network (USN) system based on on-line and real-time monitoring system is being developed by the authors' research group. In this study, real-time pipeline health monitoring (PHM) methodology is presented based on electromechanical impedance methods using USN. Two types of damages including loosened bolts and notches are artificially inflicted on the pipeline structures, PZT and MFC sensors that have piezoelectric characteristics are employed to detect these damages. For objective evaluation of pipeline conditions, Damage metric such as Root Mean Square Deviation (RMSD) value was computed from the impedance signals to quantify the level of the damage. Optimal threshold levels for decision making are estimated by generalized extreme value(GEV) based statistical method. Throughout a series of experimental studies, it was reviewed the effectiveness and robustness of proposed PHM system.

LRB-based hybrid base isolation systems for cable-stayed bridges (사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, Billie-F.Jr.;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.63-76
    • /
    • 2004
  • This paper presents LRB-based hybrid base isolation systems employing additional active/semiactive control devices for mitigating earthquake-induced vibration of a cable-stayed 29 bridge. Hybrid base isolation systems could improve the control performance compared with the passive type-base isolation system such as LRB-installed bridge system due to multiple control devices are operating. In this paper, the additional response reduction by the two typical additional control devices, such as active type hydraulic actuators controlled by LQG algorithm and semiactive-type magnetorheological dampers controlled by clipped-optimal algorithm, have been evaluated bypreliminarily investigating the slightly modified version of the ASCE phase I benchmark cable-stayed bridge problem (i.e., the installation of LRBs to the nominal cable-stayed bridge model of the problem). It shows from the numerical simulation results that all the LRB based hybrid seismic isolation systems considered are quite effective to mitigate the structural responses. In addition, the numerical results demonstrate that the LRB based hybrid seismic isolation systems employing MR dampers have the robustness to some degree of the stiffness uncertainty of in the structure, whereas the hybrid system employing hydraulic actuators does not. Therefore, the feasibility of the hybrid base isolation systems employing semiactive additional control devices could be more appropriate in realfor full-scale civil infrastructure applications is clearly verified due to their efficacy and robustness.