• 제목/요약/키워드: Structural modeling and analysis

검색결과 2,710건 처리시간 0.03초

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

공중합 아라미드 중합체의 점도에 따른 기격습식 방사구금 유동 해석 연구 (A Study on the Flow Analysis of Air-gap Wet Spinneret according to the Viscosity of Copolymerized Aramid Polymer)

  • 여동현;이종혁;이준희;유성훈;박용태;성정훈;심지현
    • 한국염색가공학회지
    • /
    • 제34권1호
    • /
    • pp.27-37
    • /
    • 2022
  • In this study, a study and interpretation of the spinning process in copolymerized aramid spinning was conducted. In order to proceed with the spinning process modeling and analysis, the spinning process was modeled through the physical property modeling of the spinning solution and the structural modeling of the spinneret, and structural stability and flow of the spinneret for this spinning were analyzed. After modeling the spinning solution and the spinneret in a virtual space, the pack pressure and flow rate when the spinning solution was discharged were simulated. Macroscopically, the structural stability of the spinneret was confirmed at the standard pack pressure (100 kg·f/cm2), and microscopically, the flow rate and pressure drop data of the spinning solution according to the L/D(Length (L)/Diameter (D)) value were analyzed. Based on the research and development of virtual engineering modeling and analysis, we present the possibility of changing the shape and mechanical properties of copolymer aramid fibers according to the spinning process.

대형 풍력발전용 복합재료 블레이드의 개선된 등가 모델링 기법 (Improved Equivalent Beam Element Modeling Technique for Large Scale Wind-Turbine Composite Blade)

  • 김동현;박효근;김동만
    • 한국유체기계학회 논문집
    • /
    • 제11권4호
    • /
    • pp.32-37
    • /
    • 2008
  • In this study, we have introduced an improved equivalent modeling technique for large scale composite wind-turbine blade. Conventional or general equivalent modeling procedure may give critical error in the analysis results because of geometric coupling effects. For the analyses of structural vibration and aeroelastic problems, the accuracy of equivalent structural models is very important since it can have high numerical efficiency and various practical applications. Three-dimensional realistic composite wind-turbine blade model is practically considered for numerical study. In order to validate the effect of the mass and the stiffness of the equivalent beam model, comparison study based on the natural vibration analysis has been conducted, and the accuracy levels of the conventional and modified equivalent modeling techniques are presented.

Virtual Modeling 기반의 철근 콘크리트 교각 설계에 관한 연구 (A Study for Design of Reinforced Concrete Pier Based on Virtual Model)

  • 이헌민;박재근;김민희;최정호;신현목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.96-99
    • /
    • 2008
  • When the design modification is occurred, at present, design process based on 2-D spend more time and effort than that based on 3-D to modify related structural details. To improve and develop these processes, therefore, the design possibility of civil structures based on virtual model of 3-D must be investigated. We designed reinforced concrete pier of 3-D model, containing parameters. The parameters was defined as structural details like area of the section, reinforcement specification for design modification and structural analysis. In this paper, we researched about the processes modeling of reinforced concrete bridge pier based on parameters, the extracting data from the virtual model of 3-D, and the reflection of data to virtual model throughout structural analysis.

  • PDF

등가모델링기법을 이용한 5MW급 부유식 해상용 풍력발전기 구조동역학해석 (Structural Dynamics Analyses of a 5MW Floating Offshore Wind-Turbine Using Equivalent Modeling Technique)

  • 김명환;김동현;김동환;김봉영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.614-622
    • /
    • 2011
  • In this study, the computational structural dynamic modeling of floating offshore wind turbine system is presented using efficient equivalent modeling technique. Structural dynamic behaviors of the offshore floating platform with 5MW wind turbine system have been analyzed using computational multi-body dynamics based on the finite element method. The considered platform configuration of the present offshore wind turbine model is the typical spar-buoy type. Equivalent stiffness and damping properties of the floating platform were extracted from the results of the baseline model. Dynamic responses for the floating wind turbine models are presented and compared to investigate its structural dynamic characteristics. It is important shown that the results of the present equivalent modeling technique show good and reasonable agreements with those by the fully coupled analysis considering complex floating body dynamics.

  • PDF

Effects of numerical modeling simplification on seismic design of buildings

  • Raheem, Shehata E Abdel;Omar, Mohamed;Zaher, Ahmed K Abdel;Taha, Ahmed M
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.731-753
    • /
    • 2018
  • The recent seismic events have led to concerns on safety and vulnerability of Reinforced Concrete Moment Resisting Frame "RC-MRF" buildings. The seismic design demands are greatly dependent on the computational tools, the inherent assumptions and approximations introduced in the modeling process. Thus, it is essential to assess the relative importance of implementing different modeling approaches and investigate the computed response sensitivity to the corresponding modeling assumptions. Many parameters and assumptions are to be justified for generation effective and accurate structural models of RC-MRF buildings to simulate the lateral response and evaluate seismic design demands. So, the present study aims to develop reliable finite element model through many refinements in modeling the various structural components. The effect of finite element modeling assumptions, analysis methods and code provisions on seismic response demands for the structural design of RC-MRF buildings are investigated. where, a series of three-dimensional finite element models were created to study various approaches to quantitatively improve the accuracy of FE models of symmetric buildings located in active seismic zones. It is shown from results of the comparative analyses that the use of a calibrated frame model which was made up of line elements featuring rigid offsets manages to provide estimates that match best with estimates obtained from a much more rigorous modeling approach involving the use of shell elements.

Staged Finite Element Modeling with Coupled Seepage and Stress Analysis

  • Lee, Jae-Young
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.703-714
    • /
    • 2010
  • This paper proposes an approach for staged finite element modeling with coupled seepage and stress analysis. The stage modeling is based on the predefined inter-relationship between the base model and the unit stage models. A unit stage constitutes a complete finite element model, of which the geometries and attributes are subject to changes from stage to stage. The seepage analysis precedes the mechanical stress analysis at every stage. Division of the wet and dry zone and the pore pressures are evaluated from the seepage analysis and used in determining input data for the stress analysis. The results of the stress analysis may also be associated with the pore water pressures. For consolidation analysis, the pore pressure and the displacement variables are mixed in a coupled matrix equation. The time marching solution produces the dissipation of excess pore pressure and variation of stresses with passage of time. For undrained analysis, the excess pore pressures are computed from the stress increment due to loading applied in the unit stage and are used in revising the hydraulic head. The solution results of a unit stage are inherited and accumulated to the subsequent stages through the relationship of the base model and the individual unit stages. Implementation of the proposed approach is outlined on the basis of the core procedures, and numerical examples are presented for demonstration of its application.

Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP

  • Hamdy, Gehan A.;Kamal, Osama A.;El-Hariri, Mohamed O.R.;El-Salakawy, Tarik S.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.611-619
    • /
    • 2018
  • This paper addresses numerical modeling and nonlinear analysis of unreinforced masonry walls and vaults externally strengthened using fiber reinforced polymers (FRP). The aim of the research is to provide a simple method for design of strengthening interventions for masonry arched structures while considering the nonlinear behavior. Several brick masonry walls and vaults externally strengthened by FRP which have been previously tested experimentally are modeled using finite elements. Numerical modeling and nonlinear analysis are performed using commercial software. Description of the modeling, material characterization and solution parameters are given. The obtained numerical results demonstrate that externally applied FRP strengthening increased the ultimate capacity of the walls and vaults and improved their failure mode. The numerical results are in good agreement with the experimentally obtained ultimate failure load, maximum displacement and crack pattern; which demonstrates the capability of the proposed modeling scheme to simulate efficiently the actual behavior of FRP-strengthened masonry elements. Application is made on a historic masonry dome and the numerical analysis managed to explain its structural behavior before and after strengthening. The modeling approach may thus be regarded a practical and valid tool for design of strengthening interventions for contemporary or historic unreinforced masonry elements using externally bonded FRP.

Optimal design of reinforced concrete plane frames using artificial neural networks

  • Kao, Chin-Sheng;Yeh, I-Cheng
    • Computers and Concrete
    • /
    • 제14권4호
    • /
    • pp.445-462
    • /
    • 2014
  • To solve structural optimization problems, it is necessary to integrate a structural analysis package and an optimization package. There have been many packages that can be employed to analyze reinforced concrete plane frames. However, because most structural analysis packages suffer from closeness of systems, it is very difficult to integrate them with optimization packages. To overcome the difficulty, we proposed a possible alternative, DAMDO, which integrates Design, Analysis, Modeling, Definition, and Optimization phases into an integration environment as follows. (1) Design: first generate many possible structural design alternatives. Each design alternative consists of many design variables X. (2) Analysis: employ the structural analysis software to analyze all structural design alternatives to obtain their internal forces and displacements. They are the response variables Y. (3) Modeling: employ artificial neural networks to build the models Y=f(X) to obtain the relationship functions between the design variables X and the response variables Y. (4) Definition: employ the design variables X and the response variables Y to define the objective function and constraint functions. (5) Optimization: employ the optimization software to solve the optimization problem consisting of the objective function and the constraint functions to produce the optimum design variables. The RC frame optimization problem was examined to evaluate the DAMDO approach, and the empirical results showed that it can be solved by the approach.

Parametric Analysis and Design Engine for Tall Building Structures

  • Ho, Goman;Liu, Peng;Liu, Michael
    • 국제초고층학회논문집
    • /
    • 제1권1호
    • /
    • pp.53-59
    • /
    • 2012
  • With the rise in CPU power and the generalization and popularity of computers, engineering practice also changed from hand calculations to 3D computer models, from elastic linear analysis to 3D nonlinear static analysis and 3D nonlinear transient dynamic analysis. Thanks to holistic design approach and current trends in freeform and contemporary architecture, BIM concept is no longer a dream but also a reality. BIM is not just providing a media for better co-ordination but also to shorten the round-the-clock time in updating models to match with other professional disciplines. With the parametric modeling tools, structural information is also linked with BIM system and quickly produces analysis and design results from checking to fabrication. This paper presents a new framework which not just linked the BIM system by means of parametric mean but also create and produce connection FE model and fabrication drawings etc. This framework will facilitate structural engineers to produce well co-ordinate, optimized and safe structures.