• 제목/요약/키워드: Structural modeling and analysis

검색결과 2,726건 처리시간 0.032초

Application assessments of concrete piezoelectric smart module in civil engineering

  • Zhang, Nan;Su, Huaizhi
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.499-512
    • /
    • 2017
  • Traditional structural dynamic analysis and Structural Health Monitoring (SHM) of large scale concrete civil structures rely on manufactured embedding transducers to obtain structural dynamic properties. However, the embedding of manufactured transducers is very expensive and low efficiency for signal acquisition. In dynamic structural analysis and SHM areas, piezoelectric transducers are more and more popular due to the advantages like quick response, low cost and adaptability to different sizes. In this paper, the applicable feasibility assessment of the designed "artificial" piezoelectric transducers called Concrete Piezoelectric Smart Module (CPSM) in dynamic structural analysis is performed via three major experiments. Experimental Modal Analysis (EMA) based on Ibrahim Time Domain (ITD) Method is applied to experimentally extract modal parameters. Numerical modal analysis by finite element method (FEM) modeling is also performed for comparison. First ten order modal parameters are identified by EMA using CPSMs, PCBs and FEM modeling. Comparisons are made between CPSMs and PCBs, between FEM and CPSMs extracted modal parameters. Results show that Power Spectral Density by CPSMs and PCBs are similar, CPSMs acquired signal amplitudes can be used to predict concrete compressive strength. Modal parameter (natural frequencies) identified from CPSMs acquired signal and PCBs acquired signal are different in a very small range (~3%), and extracted natural frequencies from CPSMs acquired signal and FEM results are in an allowable small range (~5%) as well. Therefore, CPSMs are applicable for signal acquisition of dynamic responses and can be used in dynamic modal analysis, structural health monitoring and related areas.

3차원 구조물의 유한요소해석 전처리에 관한 연구(기하학적 모델링을 중심으로) (A Study on the Preprocessing for Finite Element Analysis of 3-Dimensional Structures.(With Focus on Geometric Modelling))

  • 이재영;이진휴;한상기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.40-46
    • /
    • 1990
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierarchical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modeling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modeling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF

평판형 주름판넬에 대한 등가 연속체 모델링기법 (Equivalent Continuum Modeling Methods for Flat Corrugated Panels)

  • 이상윤;이우식
    • 한국철도학회논문집
    • /
    • 제3권2호
    • /
    • pp.43-50
    • /
    • 2000
  • The corrugated panels are the prime candidate structure for the floor, roof and wall of Korean high speed train. The equivalent continuum modeling approach panels can be used for the efficient design and evaluation of their structural characteristics. The equivalent continuum models, derived from the true complex corrugated panels, should have the same structural behavior as the original structures have. This paper briefly reviews three representative continuum modeling methods: the static analysis method and two plate-models based on modal analysis methods (MAM). These methods are evaluated through some numerical examples by comparing the natural frequencies and static deflections. It is observed that the plate-model based on Rayleigh-Ritz method seems to provide the best results when used in conjunction with the cantilever-type boundary conditions. The equivalent elastic constants of various corrugated panels, depending on the changes in their configurations, are tabulated for efficient use in structural design.

  • PDF

인터넷을 통한 스페이스 프레임 구조 해석에 관한 연구 (A Study of Structural Analysis for Space Frame on the World Wide Web)

  • 석창목;남상관;박상훈;정환목;권영환
    • 한국공간구조학회논문집
    • /
    • 제1권1호
    • /
    • pp.135-142
    • /
    • 2001
  • This paper proposes structural analysis on the World Wide Web to form a part of the architectural design project. It purposes modeling space frames and a structural analysis program on the internet only by inputting basic data for forming a shape in the whole phase of space frame analysis. The analysis data is conducted by Oracle DBMS(DataBase Management System), GUI(Graphic User Internet) by Java Applet and connection with server and database by Java Servlet respectively. The result from modeling and analysis is provided as graphic and text file forms by web browsers. Programs can be executed irrespective of user's OS by using internet and highly-secured system is constructed taking advantage of Java. Of great efficiency is maintaining and recycling data as the whole is dealt by database from the beginning to the end of program.

  • PDF

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • 제10권2호
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

동일 데이터를 이용한 구조방정식(AMOS, LISREL and PLS) 툴 간의 비교분석 (A Comparison Analysis among Structural Equation Modeling (AMOS, LISREL and PLS) using the Same Data)

  • 남수태;김도관;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.131-134
    • /
    • 2018
  • 구조방정식 모델링은 경로분석 및 확인적 요인분석을 동시에 수행해 주는 통계적 절차를 따르고 있다. 오늘날이 통계적 절차는 사회과학 분야의 연구자에게 필수적인 도구이다. 구조방정식 모델링 분석을 해주는 대표적인 도구로는 (AMOS, LISREL and PLS)가 있다. AMOS는 초보자가 사용할 수 있도록 편리한 그래픽 사용자 인터페이스를 제공해 주고 있다. PLS는 그래픽 사용자 인터페이스뿐만 아니라 정규분포에 대한 제약조건도 없다는 장점을 가지고 있다. 또한 사회과학 분야에서 가장 많이 사용하는 3가지 도구(Applications)를 비교분석 하였다. 이러한 결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.

  • PDF

Additive 2D and 3D performance ratio analysis for steel outrigger alternative design

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1133-1153
    • /
    • 2016
  • In this article, an additive performance ratio method using structural analysis of both 2D and 3D is introduced to mitigate the complexity of work evaluating structural performances of numerous steel outrigger alternatives in multi-story buildings, especially high-rise buildings. The combined structural analysis process enables to be the design of economic, safe, and as constructional demanding structures by exploiting the advantages of steel, namely: excellent energy dissipation and ductility. First the approach decides the alternative of numerous steel outriggers by a simple 2D analysis module and then the alternative is evaluated by 3D analysis module. Initial structural analyses of outrigger types are carried out through MIDAS Gen 2D modeling, approximately, and then the results appeal structural performance and lead to decide some alternative of outrigger types. ETABS 3D modeling is used with respect to realization and evaluation of exact structural behaviors. The approach reduces computational burden in compared to existing concepts such as full 3D analysis methods. The combined 2D and 3D tools are verified by cycle and displacement tests including comprehensive nonlinear dynamic simulations. The advantages and limitations of the Additive Performance Ratio Approach are highlighted in a case study on a high rise steel-composite building, which targets at designing the optimized alternative to the existing original outrigger for lateral load resisting system.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

기둥지지-벽식구조에서 전이층의 구조해석모델링에 대한 연구 (Investigation of the Structural Modeling of Transfer Floor in Column-Supported Wall Structure)

  • 김영찬;이재준
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.79-83
    • /
    • 2005
  • Recently, column-supported wall structural system is frequently adopted in mixed-use high-rise buildings. Due to the sudden change of stiffness at the transfer floor proper load transfer and avoiding stress concentration are very important in column-supported wall structural system. It is revealed by many investigators that 2-dimensional analysis is not reliable and inappropriate selection of element for modeling may lead to erroneous result for gravitational loading. In this study, structural behavior of column-supported wall structure at transfer floor subject to lateral loading is compared by changing modeling methods.

아파트 슬래브의 진동평가에 관한 연구 (A Study on Vibration Analysis for the Slab of Apartment Building)

  • 박강근;김용태;최영화
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.333-340
    • /
    • 2006
  • In these days the floor vibration is beginning to make its appearance of the environmental dispute in apartment building. Standard floor system are suggested for the settlement of this issue by government. The sound of floor impact sound is needed to secure comfortable quality in housing. Also, it is required an accurate analysis and a proper evaluation for floor vibration. Refine model is necessary for the floor system of housing to analyze accurately the floor vibration. But this refine model is not efficient because it is required so much running time for vibration analysis and it is difficult of modeling of standard floor slab. In this paper, new modeling methods of standard floor slab are proposed for the accurate rigidity evaluation. By using the new modeling method, the accurate vibration response can be obtained and can accurately evaluate the rigidity of standard floor system with resilient materials. Therefore the proposed modeling method is of practical use for vibration analysis of floor system of apartment building.

  • PDF