• 제목/요약/키워드: Structural mode

검색결과 2,365건 처리시간 0.023초

Stability Analysis of Steel Cable-stayed Bridges under Construction Stage (폐합 전 강사장교의 안정성 해석)

  • Kim, Seung-Jun;Shim, Kyung-Suk;Won, Deok-Hee;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • 제23권1호
    • /
    • pp.99-111
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges in the construction stage, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the P-${\Delta}$ effects of the girder and mast, and the large displacement effect. Initial shape analysis and construction-stage analysis were performed to determine the equilibrium of the structure in the construction stage. After that, geometric nonlinear analysis was performed to study structural stability. In this study, the weight of the derrick crane and the key segment were considered the main external loads, which were applied to the tip of the center span. The cable arrangement type and the stiffness ratios of the girder and mast were considered the main parameters of the analytic research. Based on the results of the analysis, the change in the buckling mode and critical load factors with respect to the cable arrangement type and the stiffness ratios of the girder and mast was investigated. The buckling modes of the steel cable-stayed bridges in the construction stage were classified, and the ranges of the stiffness ratios of the girder and mast, which show these classified buckling modes, were suggested.

Pushover Analysis of a Five-Story Steel Framed Structure Considering Beam-to-Column Connection (보-기둥 접합부를 고려한 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • 제22권2호
    • /
    • pp.129-137
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effect of the beam-column connection on the structural behavior. The connections were designed as a fully rigid connection and as a semirigid connection. A fiber model was utilized to describe the moment-curvature relationship of the steel beam and column, and a three-parameter power model was adopted for the moment-rotation angle of the semirigid connection. To evaluate the effects of higher modes on structural behavior, the structure was subjected to a KBC2005-equivalent lateral load and lateral loads considering higher modes. The structure was idealized as a separate 2D frame and as a connected 2D frame. The pushover analysis of 2D frames for the lateral load yielded the top displacement-base shear force, design coefficients such as overstrength factor, ductility ratio, and response modification coefficient, demanded ductility ratio for the semirigid connection,and distribution of plastic hinges. The sample structure showed a greater response modification coefficient than KBC2005, the higher modes were found to have few effects on the coefficient, and the lateral load of KBC2005 was found to be conservative. The TSD connection was estimated to secure economy and safety in the sample structure.

Analytical and Experimental Study on the Quality Stability of Multi Roll Forming Process (멀티 롤 포밍 공정의 품질 안정성에 대한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Han, Chang-Woo;Ryu, Kyung-Jin;Kang, Hae-Dong;Kim, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권10호
    • /
    • pp.6977-6984
    • /
    • 2015
  • It is faced with the necessity of multi roll forming process of the ball slide rail which is made by adding the separate manufacturing processes, piercing, bending, trimming, to the roll forming process of a continuous plastic deformation, to improve the quality. However, the vibration and noise of the press machine in this process leads to the quality degradation of slide rail manufactured in this process. In this study, the roll was designed considering the optimal strain rates by the roll forming program with finite element method. And to estimate the static stability of the multi process the Von-Mises stress and deformation on the press was calculated with a structural analysis program. Also, to avoid driving systems in the resonance region their natural frequencies in the 1st and 2nd mode were calculated through the modal analysis. To verify its dynamic stability improvement the magnitudes of noise and vibration in the existing and studied system were compared using a microphone and accelerometers. And the widths and surface roughnesses of the rails which had been produced in the existing and studied process were measured. Therefore, it is known that multi roll forming process is stable in the analytical and experimental study.

Different Physiological Activity of Selected Rice Cultivars to Diphenylether Herbicide, Oxyfluorfen - II. Different Anatomical and Ultrastructural Responses (Oxyfluorfen에 대한 내성(耐性) 및 감수성(感受性) 벼품종(品種)의 생리활성(生理活性) 기구(機構) - II. 잎 표면(表面), 해부(解剖) 및 미세구조(微細構造) 반응(反應))

  • Kuk, Y.I.;Guh, J.O.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • 제16권1호
    • /
    • pp.54-63
    • /
    • 1996
  • This study was conducted to investigate the anatomical and ultrastructural responses of the oxyfluorfen-tolerant and -susceptible rice cultivars with barnyardgrass, a typical susceptible weed by oxyfluorfen and the herbicides having similar mode of action treatment. After the treatment of $10^{-5}M$ oxyfluorfen, the tolerant rice cultivars no showed the structural damage of leaf surface, but the susceptible rice cultivate was damaged in the wax and the susceptible barnyardgrass was even destroyed in the tissue irregularly. Also in the susceptible rice cultivars and barnyardgrass the thickness of leaf blade was greatly decreased. The anatomical change was not observed in the tolerant rice cultivars but epidermal cells, mesophyll cells and bundle sheath cells were badly broken in the susceptible rice cultivars and barnyardgrass and especially after 24 hours of the treatment the structure of susceptible rice cultivars was completely disintegrated. The irregularity of chloroplast shape and the distortion of chloroplast envelope were generally observed and the starch tended to decrease by oxyfluorfen treatment regardless of rice cultivars. Such a structural damage were appeared more badly in the susceptible rice cultivars and bamyardgrass than in the tolerant rice cultivars. By the treatment of diphenyl ether herbicides, the thickness of leaf blade greatly reduced in the order of oxyfluorfen > acifluorfen > bifenox > oxadiazon, and the susceptible rice cultivars showed more reduction than the tolerant rice cultivars. Especially, the susceptible rice cultivars showed that the leaf structure was badly broken down with damage epidermal cells and bundle sheath cells.

  • PDF

Variation of Seismic Behavior of Continuous Skew Plate Girder Bridges According to the Arrangement of Bearings (받침배치에 따른 연속 플레이트 거더 사교의 지진거동 변화)

  • Moon, Seong Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제15권5호
    • /
    • pp.124-135
    • /
    • 2011
  • The capacity of bearings installed at abutments and piers for continuous bridges is usually determined by the magnitude of the maximum vertical reaction at each support and the capacity of bearings placed at piers is higher than that at abutments. In this study, the possibility of the improved seismic performance of base-isolated continuous skew bridges was investigated by analysing the variation of the seismic behavior of them according to three arrangements of bearings. Based on the conventional arrangement of bearings(Case A), three arrangements of bearings such as Case A, Case B and Case C were selected considering the variation of the horizontal stiffness of the lead rubber bearing(LRB) installed at the pier. The seismic behavior of the total 36 skew bridges was investigated by conducting the response spectrum analysis using the hybrid response spectrum considered the effect of LRB's damping. Results of analyses show that a more desirable seismic behavior of base-isolated continuous skew bridges can be obtained by reducing the magnitude of the horizontal stiffness of LRB placed at the pier to similar to or less than that of LRB installed at abutments. The variation of LRB's stiffness at the pier brings about period elongation and the change of mode shapes of base-isolated skew bridges and results in the reduction of the total base shear, the maximum base shear at the pier and the girder stresses. Although positive effects on the seismic behavior of base-isolated skew bridges caused by the change of arrangement of bearings decreased slighty with an increase in the flexibility of the substructure, the proposed arrangements of bearings bring about the improved seismic performance of base-isolated continuous skew plate girder bridges with less than 10m height of piers.

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제15권5호
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.

Characteristics of Shear Behavior of Reinforced Concrete Beams Strengthened with Near Surface Mounted CFRP Strips (CFRP 스트립 표면매립공법으로 보강된 철근콘크리트 보의 전단거동 특성)

  • Han, Sang Hoon;Hong, Ki Nam;Shin, Byoung Gil;Lim, Jin Mook;Kwak, So Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제15권5호
    • /
    • pp.178-189
    • /
    • 2011
  • Tests and analyses were performed in this study to assess the shear strength of Reinforced Concrete(RC) members strengthened by the Near Surface Mounted(NSM) technique in shear, which is drawing attention as an alternative to the Carbon Fiber Reinforced Polymer(CFRP) bonding strengthening technique. Four-point bending tests were performed on 7 RC specimens without any shear reinforcement. The test variables such as the inclination of CFRP strip (45 degrees and 90 degrees), and the spacing of CFRP strip (250mm, 200mm, 150mm, 100mm) were considered. Through the testing scenarios, the effect of each test variable on the failure mode and the shear strength of the RC members strengthened by the NSM technique in shear were assessed. The test results show that the specimens with CFRP strips at 45 degrees go to failure as a result of the strip fracture, but the specimens with CFRP strips at 90 degrees go to failure as a result of the slip of strips. Strips at 45 degrees was the more effective than strips at 90 degrees, not only in terms of increasing beam shear resistance but also in assuring larger deformation capacity at beam failure. In addition, the RBSN analysis appropriately predicted the crack formation and the load-displacement response of the RC members strengthened by the NSM technique in shear.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Embedded CFRP Rods and CFRP Sheets (매입형 CFRP Rod와 CFRP시트를 활용한 RC 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Kang, Hyun-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제18권3호
    • /
    • pp.40-48
    • /
    • 2014
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (embedded CFRP rod and CFRP sheet) in existing reinforced concrete building. Therefore it was constructed and tested six specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete building, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRC2, designed by the retrofitting of CFRP Rod and CFRP Sheet in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.97 times and its energy dissipation capacity by 2.08 times in comparison with standard specimen RBCJ for a displacement ductility of 4 and 7. Also, specimens RBCJ-SRC2 were increased its maximum load carrying capacity by 1.09~1.11 times in comparison with specimen RBCJ-SR series. And Specimens RBCJ-CS, RBCJ-SR series, RBCJ-SRC2 were increased its energy dissipation capacity by 1.10~2.30 times in comparison with standard specimen RBCJ for a displacement ductility of 5, 6.

Finite Element Analysis of Reinforced Concrete Masonry Infilled Frames with Different Masonry Wall Thickness Subjected to In-plane Loading (채움벽 두께에 따른 철근콘크리트 조적채움벽 골조의 면내하중에 대한 유한요소해석)

  • Kim, Chungman;Yu, Eunjong;Kim, Minjae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제29권1호
    • /
    • pp.85-93
    • /
    • 2016
  • In this study, finite element analyses of masonry infilled frames using a general purpose FE program, ABAQUS, were conducted. Analysis models consisted of the bare frame, infilled frames with masonry wall thickness of 0.5B and 1.0B, respectively. The masonry walls were constructed using the concrete bricks which were generally used in Korea as infilled wall. The material properties of frames and masonry for the analysis were obtained from material tests. However, four times increased the tensile strength was used for 1.0B wall, which is seemingly due to the differences in locating the bricks. The force-displacement relation and development of crack from the FE analysis were very similar to those from the experiments. From the FEA results, contact force between the frame and masonry, distribution of shear force and bending moments in frame members were analyzed. Obtained contact stress shows a trianglur distribution, and the contact length for 0.5B speciment and 1.0B specimen were close to the value estimated using ASCE 41-06 equation and ASCE 41-13 equation, respectively. Obtained shear force and bending moment distribution seems to replicate actual behavior which originates from the contact stress and gap between the frame and masonry.

Numerical Prediction of Ultimate Strength of RC Beams and Slabs with a Patch by p-Version Nonlinear Finite Element Modeling and Experimental Verification (p-Version 비선형 유한요소모델링과 실험적 검증에 의한 팻취 보강된 RC보와 슬래브의 극한강도 산정)

  • Ahn Jae-Seok;Park Jin-Hwan;Woo Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제17권4호
    • /
    • pp.375-387
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of RC beams and slabs strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version nonlinear finite element model is demonstrated through the load-deflection curves, the ultimate loads, and the failure modes of RC beams or slabs bonded with steel plates or FRP plates compared with available result of experiment and other numerical methods.