• 제목/요약/키워드: Structural integrity testing

검색결과 117건 처리시간 0.025초

Evaluation of Structural Integrity and Performance Using Nondestructive Testing and Monitoring Techniques

  • Rhim, Hong-Chul
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.

  • PDF

Using structural intensity approach to characterize vibro-acoustic behavior of the cylindrical shell structure

  • Wang, Yuran;Huang, Rong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.297-319
    • /
    • 2018
  • In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is proposed by altering and redistributing the structural intensity through changing the damping property of the structure. The concept of proposed novel method is based on the properties of structural intensity distribution on cylindrical shells under different load and damping conditions, which can reflects power flow in the structures. In the study, the modal formulas of structural intensity are developed for the steady state vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by substituting modal quantities, in which the effect of main parameters such as weight coefficients and distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly arranging damping conditions, the structural intensity can be efficiently changed and further the noise property can be improved. The proposed methodology has important implications and potential applications in the vibration and noise control of fuselage structure.

성층권 장기체공 무인기 주익 구조 해석 및 건전성 평가 (Structural Analysis and Integrity Verification of Main Wing of HALE UAV)

  • 박상욱;김성준;신정우;이승규;김태욱
    • 한국항공운항학회지
    • /
    • 제27권4호
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, development of long endurance electric powered airplane has been conducted worldwidely. Light structural weight of a main wing with sufficient structural integrity is essential for long endurance flight. Since a main wing with a slender spar can occur catastrophic fracture under the flight, it is important to establish a design and verification method for both the weight reduction and structural integrity. In this paper, structural design and analysis of the main wing of HALE UAV with tubular spar reinforced with a bulkhead were introduced. The static strength test of the main wing was performed to verify structural integrity under the static load. Then, the experimental result was compared with an analytical result from a finite element analysis. It was concluded that the developed light weight main wing would have sufficient structural integrity under the flight operation.

패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구 (Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition)

  • 김길동;이장규
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2008년도 춘계학술대회
    • /
    • pp.185-196
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Simple tension and AE tests were conducted against the 3 kind of welding test specimens. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multivariate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

  • PDF

패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구: 인장시험을 중심으로 (Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition: Focused on Tensile Test)

  • 김길동;이장규
    • 대한안전경영과학회지
    • /
    • 제10권4호
    • /
    • pp.127-134
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Monotonic simple tension and AE tests were conducted against the 3 kinds of welded specimen. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multi-variate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

공력해석 및 구조시험을 통한 소형 복합재 블레이드의 구조 안전성 평가 (Structural Integrity through Aerodynamic Analysis and Structural Test for Small Wind Turbine Composite Blade)

  • 장윤정;정진환;이장호;강기원
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.63-68
    • /
    • 2012
  • This paper deals with the aerodynamic analysis and structural test under estimated loading condition for small composite blade, which is utilized in dual rotor wind turbine system. Firstly, the front and rear blades of dual rotor wind turbine system were modeled using reverse engineering method. And using finite volume method, the aerodynamic forces were analyzed at the rated and cutout wind speed to identify the pressure distribution on blades. And then, the full scale structural tests were conducted according to load and strength based methodology in IEC 61400-2 to identify the structural integrity of composite blade.

구조물 건전도 평가를 위한 모르타르 내 공극 초음파 탐상 (Ultrasonic Testing of Voids inside Mortar for Structural Integrity Evaluation)

  • 조윤진;임홍철;김대유
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.91-92
    • /
    • 2016
  • Structural integrity of reinforced concrete structures including nuclear power plants needs to be evaluated on a regular basis. Deterioration inside the concrete structures can be represented by voids. In this study, the varied volume fraction of voids inside mortar specimens was studied as a parameter using ultrasonic testing equipments. Both direct and indirect measurement methods were employed. The results show that there is a clear distinction between the specimens with different void volume fractions.

  • PDF

Modelling and integrity assessment of shear connectors in precast cast-in-situ concrete bridges

  • Moyo, Pilate;Sibanda, Bongani;Beushausen, Hans
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.55-72
    • /
    • 2012
  • Precast-cast insitu concrete bridge construction is widely practiced for small to medium span structures. These bridges consist of precast pre-stressed concrete beams of various cross-sections with a cast in-situ reinforced concrete slab. The connection between the beams and the slab is via shear links often included during the manufacturing process of the beams. This form of construction is attractive as it provides for standardisation, reduced formwork and construction time. The assessment of the integrity of shear connectors in existing bridges is a major challenge. A procedure for assessment of shear connectors based on vibration testing and finite element model updating is proposed. The technique is applied successfully to a scaled model bridge model and an existing bridge structure.

회전형 탐촉자의 다중균열 분해능이 증기발생기 전열관의 구조건전성 평가에 미치는 영향 (An Effect on the Structural Integrity Assessment of Steam Generator Tubes with Resolution of Rotating Pancake Coils for Multiple Cracks)

  • 강용석;천근영;남민우;박재학
    • 비파괴검사학회지
    • /
    • 제34권5호
    • /
    • pp.356-361
    • /
    • 2014
  • 회전형 탐촉자(RPC)는 증기발생기 전열관의 결함 탐지 및 크기 측정 목적으로 널리 사용되고 있다. 손상이 탐지된 전열관에 대한 건전성 평가는 비파괴검사에서 얻어진 열화의 크기 정보를 바탕으로 수행되기 때문에 검사기술의 성능은 전열관의 건전성 평가에 직접적으로 영향을 미치게 된다. 동일 전열관의 인접한 거리에 다중균열이 존재할 경우 검사 기술의 결함 분해능에 제약이 따를 수 있으며 그 영향이 클 경우 근접한 다중균열이 상대적으로 큰 단일균열로 평가될 수 있으므로 전열관의 구조건전성 평가에 오류를 유발할 수 있게 된다. 따라서 본 연구에서는 방전가공으로 균열을 모사한 인공결함에 대한 RPC 탐촉자의 결함 분해능을 관찰하고 전열관의 구조건전성 평가에 미치는 영향을 살펴보았다. 동일 직선상에 놓인 다중균열은 매우 근접한 거리까지 개별균열 식별이 가능하여 건전성 평가에 미치는 영향이 없는 반면, 인접한 거리에 평행하게 놓인 균열의 경우는 RPC 탐촉자의 분해능이 낮아서 부정확한 결함 크기 정보가 얻어지므로 결함관의 파열압력 예측에 영향을 미칠 수 있다.