• Title/Summary/Keyword: Structural equations model

Search Result 737, Processing Time 0.025 seconds

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Dynamic Modeling and Analysis of the Washing Machine System with an Automatic Balancer (자동 밸런서를 갖는 세탁기 시스템의 동력학 모델링 및 해석)

  • Oh, Hyuck-Jin;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1212-1220
    • /
    • 2004
  • The structural unbalance mass and laundry are the important sources of the severe vibrations of automatic washing machines. In this paper, a mathematical model is developed for the dynamic analysis of the vertical axis automatic washing machines of pulsator-type. In the model, the rigid body motion of tub assembly is represented by six degrees of freedom and the dynamics of automatic hydraulic balancer is represented by one degree of freedom. The fundamental elastic modes of the tub shell and four suspension bars are also taken into account in the mathematical model, based on analytical and experimental modal analysis results. The 12 degrees of freedom equations of motion are derived by using the Lagrange's equations and the present dynamic model is evaluated by comparing the numerical simulation results with experimentally measured data.

Inclusive Growth and Innovation: A Dynamic Simultaneous Equations Model on a Panel of Countries

  • Bresson, Georges;Etienne, Jean-Michel;Mohnen, Pierre
    • STI Policy Review
    • /
    • v.6 no.1
    • /
    • pp.1-23
    • /
    • 2015
  • Based on the work of Anand et al. (2013) we measure inclusive income growth, which combines growth in gross domestic product (GDP) per capita and growth in the equity of the income distribution. Extending the work of Causa et al. (2014), we estimate a dynamic simultaneous structural equations model of GDP per capita and inclusive income on panel data for 63 countries over the 1990-2013 period. We estimate both equations in error correction form by difference GMM (generalized method of moments). Among the explanatory variables of the level and the distribution of GDP per capita we include R&D (research and development) expenditure per capita. In OECD countries we obtain a large positive effect of R&D on GDP. R&D is found to have a positive effect on the social mobility index but its impact on the income equity index at first decreases, then switches around to become slightly positive in the long run. In non- OECD countries, R&D is found to decrease inclusive income, mostly through a negative growth effect but also because of a slightly increasing income inequity effect.

A Linear and Consistent Class of Econometric Estimators in Simultaneous Equations

  • Srivastava, V.K.;Dwivedi, T.D.;Agnihotri, B.S.
    • Journal of the Korean Statistical Society
    • /
    • v.8 no.2
    • /
    • pp.117-123
    • /
    • 1979
  • Striaght-forward application of the ordinary least squares model for estimating the parameters of a simultaneous linear stochastic equations model does not provide consistent estimators due to the fact that the explanatory jointly dependent variables are correlated with the disturbances. The search for consistent estimators during the last three decades has yielded a variety of estimators which can be broadly classified into two groups, namely, limited information and full information. Both the groups fails to uilize the over-identifying restrictions in the structural equations except the one under study while the latter group succeeds; see, e.g. Srivastava(1978) for a brief review and Theil (1961) for a detail description.

  • PDF

Inelastic transient analysis of piles in nonhomogeneous soil

  • Kucukarslan, S.;Banerjee, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.545-556
    • /
    • 2007
  • In this paper, a hybrid boundary element technique is implemented to analyze nonlinear transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is presented by introducing a rational approximation to the continuum with nonlinear interface springs along the piles. Modified $\ddot{O}$zdemir's nonlinear model is implemented and systems of equations are coupled at interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the resulting governing equations are solved using an implicit integration scheme. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. A numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

Theoretical formulation for vehicle-bridge interaction analysis based on perturbation method

  • Tan, Yongchao;Cao, Liang;Li, Jiang
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.191-204
    • /
    • 2022
  • A three-mass vehicle model including one rigid mass and two unsprung masses is adopted to predict the vehicle-bridge interaction (VBI) and to establish the nonlinear coupled governing equations. To overcome the numerical instability and large computation problems concerning the vehicle-bridge system, the perturbation method is used to convert the nonlinear coupled governing equations into a set of linear uncoupled equations. Formulas for bridge's natural frequencies considering both the VBI and the dynamic responses of bridge and vehicle are proposed. Compared with the numerical results obtained by the Newmark-β method, the theoretical solutions for natural frequencies and dynamic responses are validated. The effects of the important factors of unsprung mass, vehicle damping, surface irregularity on the natural frequencies and dynamic responses of bridge and vehicle are discussed, based on the theoretical solutions.

Superharmonic and subharmonic vibration resonances of rotating stiffened FGM truncated conical shells

  • Hamid Aris;Habib Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.545-562
    • /
    • 2023
  • In this work, superharmonic and subharmonic resonance of rotating stiffened FGM truncated conical shells exposed to harmonic excitation in a thermal environment is investigated. Utilizing classical shell theory considering Coriolis acceleration and the centrifugal force, the governing equations are extracted. Non-linear model is formulated employing the von Kármán non-linear relations. In this study, to model the stiffener effects the smeared stiffened technique is utilized. The non-linear partial differential equations are discretized into non-linear ordinary differential equations by applying Galerkin's method. The method of multiple scales is utilized to examine the non-linear superharmonic and subharmonic resonances behavior of the conical shells. In this regard, the effects of the rotating speed of the shell on the frequency response plot are investigated. Also, the effects of different semi-vertex angles, force amplitude, volume-fraction index, and temperature variations on the frequency-response graph are examined for different rotating speeds of the stiffened FGM truncated conical shells.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Nonlinear section model for analysis of RC circular tower structures weakened by openings

  • Lechman, Marek;Stachurski, Andrzej
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • This paper presents the section model for analysis of RC circular tower structures based on nonlinear material laws. The governing equations for normal strains due to the bending moment and the normal force are derived in the case when openings are located symmetrically in respect to the bending direction. In this approach the additional reinforcement at openings is also taken into account. The mathematical model is expressed in the form of a set of nonlinear equations which are solved by means of the minimization of the sums of the second powers of the residuals. For minimization the BFGS quasi-Newton and/or Hooke-Jeeves local minimizers suitably modified are applied to take into account the box constraints on variables. The model is verified on the set of data encountered in engineering practice. The numerical examples illustrate the effects of the loading eccentricity and size of the opening on the strains and stresses in concrete and steel in the cross-sections under consideration. Calculated results indicate that the additional reinforcement at the openings increases the resistance capacity of the section by several percent.