• Title/Summary/Keyword: Structural energy

Search Result 4,457, Processing Time 0.029 seconds

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels (구조용단열패널의 정적가력과 반복가력 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2013
  • Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. In Korea, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to identify fundamental performance of both monotonic load and quasi static cyclic load for SIPs in shear wall application. Static test results showed that maximum load was 44.3kN, allowable shear load was 6.1kN/m, shear stiffness was 1.23 M N/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, it was recommended that the allowable shear load for panels was at least 6.1kN/m.

Optimal Sensor Allocation of Cable-Stayed Bridge for Health Monitoring (사장교의 상시감시를 위한 최적 센서 구성)

  • Heo, Gwang-Hee;Choi, Mhan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.145-155
    • /
    • 2002
  • It is essential for health monitoring of a cable-stayed bridge to provide more accurate and enough information from the sensors. In experimental modal testing, the chosen measurement locations and the number of measurements have a major influence on the quality of the results. The choice is often difficult for complex structures like a cable-stayed bridge. It is extremely important a cable-stayed bridge to minimize the number of sensing operations required to monitor the structural system. In order to obtain the desired accuracy for the structural test, several issues must take into consideration. Two important issues are the number and location of response sensors. There are usually several alternative locations where different sensors can be located. On the other hand, the number of sensors might be limited due to economic constraints. Therefore, techniques such as methodologies, algorithms etc., which address the issue of limited instrumentation and its effects on resolution and accuracy in health monitoring systems are paramount to a damage diagnosis approach. This paper discusses an optimum sensor placement criterion suitable to the identification of structural damage for continuous health monitoring. A Kinetic Energy optimization technique and an Effective Independence Method are analyzed and numerical and theoretical issues are addressed for a cable-stayed bridge. Its application to a cable-stayed bridge is discussed to optimize the sensor placement for identification and control purposes.

An Analysis and Visualization System for Ship Structural Intensity Using a General Purpose FEA Program (범용 유한요소해석 프로그램을 이용한 선박 진동인텐시티 해석 및 가시화 시스템)

  • Kim, Byung-Hee;Yi, Myung-Seok;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.487-492
    • /
    • 2005
  • The structural intensity analysis, which calculates vibration energy flow from vibratory velocity and internal force of a structure, can give information on sources' power, dominant transmission path and sink of vibration energy. In this study, we present a system for structural intensity analysis and visualization to apply for anti-vibration design of ship structures. The system calculates structural intensity from the results of forced vibration analysis and visualize the intensity using a general purpose finite element analysis program MSC/Nastran and its pre- and post-processor program. To demonstrate the analysis and visualization capability of the presented system, we show and discuss the results of structural intensity analysis for a cross-stiffened plate and a 70,500 OW crude oil tanker

Seismic Energy Demand of Structures Depending on Ground Motion Characteristics and Structural Properties (지반 운동과 구조물 특성에 따른 구조물의 에너지 요구량)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.59-68
    • /
    • 2005
  • The energy-based seismic design method Is more rational in comparison with current seismic design code in that it can directly account for the effects of cumulative damage by earthquake and hysteretic behavior of the structure. However there are research results that don't reach a consensus depending on the ground motion characteristic and structural properties. For that reason in this study the influences of ground motion characteristics and structural properties on energy demands were evaluated using 100 earthquake ground motions recorded in different soil conditions, and the results obtained were compared with those of previous works. Results show that ductility ratios and sue conditions have significant influence on input energy. The results show that the ratio of hysteretic to input energy is considerably influenced by the ductility ratio, damping ratio, and strong motion duration, while the effect of site condition is insignificant.

A Comparative Study of Global Economic Models for Climate Change Policy: A Structural and Technological Analysis (기후변화 글로벌 경제모형의 구조 및 기술적 변화에 따른 비교 분석)

  • Hong, Jong Ho;Kim, Changhun
    • Environmental and Resource Economics Review
    • /
    • v.20 no.3
    • /
    • pp.419-457
    • /
    • 2011
  • This study aims at understanding the characteristics of global economic models, which are widely used for climate change policy analysis. A literature review study was conducted in order to derive general features of top-down models such as CGE and bottom-up/hybrid models such as GTEM. Furthermore, a structural analysis was carried out by applying parameter and structural components from other models to a particular model to observe the potential differences in outcomes. Literature review shows that bottom-up or hybrid models generally have higher level of reduction potentials than top-down models in the long run. This contradicts the conclusion presented by IPCC, and raises the need for more rigorous investigation through structural analysis. Structural analysis of EPPA model indicates that the structural component of the energy sector in a particular model is the most influential factor in predicting baseline emissions and reduction potentials. This includes the structure among energy, capital, and labor inputs, and the substitution elasticities within the energy bundle. Technology bundle can establish the conclusions from literature review, and change in Armington elasticities do not significantly affect the outcome in aggregate.

  • PDF

LAYERWISE FORMULATION OF PIEZOELECTRIC LAMINATED COMPOSITES

  • Lee, Jaehong-;Ham, Hee-Jung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.121-128
    • /
    • 1994
  • A layerwise theory for the dynamic response of a laminated composite plate with integrated piezoelectric actuators and sensors subjected to both mechanical and electrical loadings is proposed. The formulation is derived form the variational principle with consideration for both total potential energy of the structures and the electrical potential energy of the piezoceramics. The governing equations of the present theory account for direct and converse effects of piezoelectrics, and layerwise variation of displacement field through the thickness of a laminate.

  • PDF

A Study on Remodeling for Building Performance Improvement (건물성능개선을 위한 리모델링에 관한 연구)

  • 김남효
    • Korean Institute of Interior Design Journal
    • /
    • no.25
    • /
    • pp.42-48
    • /
    • 2000
  • The building remodeling is providing a lot of solutions - structural, aesthetic, environmental, and energy performance improvement - in improving buildings performance and environment. The remodelings influences on our society are resource conservation, environmental conservation, expansion of construction market, and creation of new employment. The three principal remodeler groups involved in this building remodeling are general construction contractors, interior architecture contractors, and ESCO (Energy Service Company). Having a representative character, this study classifies remodeling methods into five types: structural remodeling, spatial remodeling, exterior remodeling, environment-friendly remodeling, and ecological remodeling.

  • PDF