• Title/Summary/Keyword: Structural energy

Search Result 4,457, Processing Time 0.041 seconds

Crushing analysis of aluminum/composite FML conical structures; Numerical and experimental investigation

  • Afshin Tafazoli;Masoud Asgari
    • Structural Engineering and Mechanics
    • /
    • v.92 no.4
    • /
    • pp.421-432
    • /
    • 2024
  • Energy absorbers are crucial for absorbing collision energy, and much research is being done continuously to enhance their performance. These structures are widely applicable in automotive crash boxes and other passive safety systems, where efficient energy absorption and structural stability are essential for occupant protection during collisions. Safety and energy consumption concerns have led researchers to make the structures lighter in addition to better energy absorption. The most significant factors influencing the behavior of energy absorbers are the structure's geometry and material. Conical frustum, aluminum, and composite are among the things been raised in the research. In this research, aluminum structures were produced in two versions and with different geometric specifications. In experimental and numerical studies, aluminum and composite-coated samples were compared. The results show that utilizing an aluminum-composite combination can boost specific energy absorption by up to three times while increasing peak force and mean force. Also, by examining the impact of the parameters involved in the structure's energy absorption in the RSM method, the structure's performance has been significantly impacted by the use of composites. It has reduced the dependence of the energy absorption on the structure's geometry, which, along with controlling the process of regular destruction, has increased energy absorption.

Sizing, geometry and topology optimization of trusses using force method and supervised charged system search

  • Kaveh, A.;Ahmadi, B.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.365-382
    • /
    • 2014
  • In this article, the force method and Charged System Search (CSS) algorithm are used for the analysis and optimal design of truss structures. The CSS algorithm is employed as the optimization tool and the force method is utilized for analysis. In this paper in addition to member's cross sections, redundant forces, geometry and topology variables are considered as the optimization variables. Minimum complementary energy principle is used directly to analyze the structure. In the presented method, redundant forces are calculated by the CSS in order to minimize the energy function. Combination of the CSS and force method leads to an efficient algorithm in comparison to some of the optimization algorithms.

A Reference Container Concept for Spent Fuel Disposal : Structural safety for dimensioning of the reference container

  • Choi, Jong-Won;Kwon, Sang-Ki;Kang, Chul-Hyung;Kwon, Young-Joo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 2004
  • This paper presents the mechanical and thermal stress analysis of a disposal canister to provide basic information for dimensioning the canister and configuration of the canister components. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head, and the thermal load build up in the container.

Seismic study of buildings with viscoelastic dampers

  • Pong, W.S.;Tsai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.569-581
    • /
    • 1995
  • In this paper, the seismic behavior of a 10-story building equipped with viscoelastic dampers is analyzed. The effects of ambient temperature, the thickness, the total area, and the position of the viscoelastic dampers are studied. Results indicate that the energy-absorbing capacity of viscoelastic damper decreases with increasing the ambient temperature. The thickness and the total area of viscoelastic dampers also affect the seismic mitigation capacity. The thickness cannot be too small, which is not effective in vibration reduction, nor can it be too large, which not only increases the cost but also reduces the seismic resistance. The total area of viscoelastic dampers should be determined properly for optimum damper performance at the most economical design. The mounting position of viscoelastic dampers also influences the structure's seismic performance. Numerical results show that, if properly equipped, the VE dampers can reduce the structural response both floor displacement and story shear force and increase the overall level of damping in structures during earthquakes.

Mutation Effects on FAS1 Domain 4 Related to Protein Aggregation by Molecular Dynamics Simulations and Solvation Free Energy Analysis

  • Cho, Sunhee;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.70-75
    • /
    • 2015
  • Fasciclin 1 (FAS1) is an extracellular protein whose aggregation in cornea leads to visual impairment. While a number of FAS1 mutants have been studied that exhibit enhanced/decreased aggregation propensity, no structural information has been provided so far that is associated with distinct aggregation potential. In this study, we have investigated the structural and thermodynamic characteristics of the wild-type FAS1 and its two mutants, R555Q and R555W, by using molecular dynamics simulations and three-dimensional reference interaction site model (3D-RISM) theory. We find that the hydrophobic solvent accessible surface area increases due to hydrophobic core repacking in the C-terminus caused by the mutation. We also find that the solvation free energy of the mutants increases due to the enhanced non-native H-bonding. These structural and thermodynamic changes upon mutation contribute to understand the aggregation of these mutants.

  • PDF

Application of a 3-D crack analysis model to RC cantilever decks of excessive cracking

  • Shi, Zihai;Nakano, Masaaki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.377-396
    • /
    • 2001
  • The excessive cracking of RC cantilever decks, which often requires special attention for structural engineers, is studied using a three-dimensional crack analysis model. The model is based on a fracture energy approach for analyzing cracks in concrete, and the numerical analysis is carried out using a modified load control method. The problem of excessive cracking is then studied with four different span-ratios. Based on the numerical results, the crack behavior with respect to the patterns of crack propagation, dissipation of the fracture energy, and effects on the structural integrity are discussed. The mechanisms which cause the excessive cracking are also explained.