• Title/Summary/Keyword: Structural deformation

Search Result 2,804, Processing Time 0.024 seconds

Redundancy Analysis of Stiffened Panel with Plastic Deformation due to Collision (충돌에 의한 소성변형을 갖는 보강판의 잉여강도 해석)

  • Yeom, Cheol Wung;Nho, In Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.161-169
    • /
    • 2015
  • According to SOLAS Regulation XII/6.5.3 and IMO GBS functional requirement(IMO, 2010), the structural redundancy of multi-bay stiffened panel in cargo area of bulk carrier should be provided enough in order to endure the initial design load though one bay of the stiffened panel is damaged due to plastic deformation or fatigue crack. To satisfy structural redundancy, Harmonized Common Structural Rules (hereinafter CSR-H, IACS, 2014) proposed to use 1.15 instead of 1.0 for buckling usage factor of stiffened panel in cargo area. This paper shows that buckling usage factor in CSR-H for structural redundancy is somewhat conservative considering the ultimate strength calculated by using nonlinear FEA for the damaged condition which is only one bay's plastic deformation due to colliding by weigh object like a bucket. Also, this paper presents that increasing of plate thickness only is more effective to get enough structural redundancy.

Simplified Analysis of Rectangular Liquid Storage Tanks Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 직사각형 액체저장탱크의 단순해석법)

  • Lee, Jin Ho;Cho, Jeong-Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.203-209
    • /
    • 2022
  • A simplified method for earthquake response analysis of a rectangular liquid storage tank is proposed with fluid-structure interaction considered. In order to simplify the complex three-dimensional structural behavior of a rectangular liquid storage tank, it is assumed that structural deformation does not occur in the plane parallel to the direction in which the earthquake ground motion is applied but in the plane perpendicular to the direction. The structural deformation is approximated by combining the natural modes of the simple beam and the cantilever beam. The hydrodynamic pressure, the structure's mass and stiffness, and the hydrodynamic pressure's added mass are derived by applying the Rayleigh-Ritz method. The natural frequency, structural deformation, pressure, effective mode mass, and effective mode height of the rectangular liquid storage tank are obtained. The structural displacement, hydrodynamic pressure, base shear, and overturning moment are calculated. The seismic response analysis of an example rectangular liquid storage tank is performed using the proposed simplified approach, and its accuracy is verified by comparing the results with the reference solution by the finite element method. Existing seismic design codes based on the hydrodynamic pressure in rigid liquid storage tanks are observed to produce results with significant errors that cannot be ignored.

Deformation Analysis of Solid-Liquid Coupled Structure using Explicit Finite Element Program (외연 유한요소 프로그램을 이용한 고체-액체 조합 구조물의 변형해석)

  • 최형연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.150-155
    • /
    • 2000
  • In this study, deformation analysis for solid-liquid coupled structure has been performed using explicit finite element program In order to model the behavior of liquid, SPH (Smooth Particle Hydrodynamics) algorithm was adopted. Crash test and simulation for the hydro-type impact energy absorber were given as an example of industrial application. The obtained good correlation between the test results and simulation reveals that the proposed method could be used effectively for the structural analysis of solid-liquid coupled problems

  • PDF

Modeling of coupled THMC processes in porous media

  • Kowalsky, Ursula;Bente, Sonja;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.27-52
    • /
    • 2014
  • For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Structural Safety Analysis of Car Body (차체의 구조 안전 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.12-16
    • /
    • 2008
  • The state of deformation and stress and the structural safety are studied at the main frame composed with car body by the impact of front, offset and overturn in this study. The values of maximum deformation and von-Mises stress in case of offset impact are 2 to 3 times as high as those in case of front or offset impact at the parts of front and middle legs of roll cage. The case of front impact is of the greatest safety as compared with the case of offset or overturn impact. As there is a great stress on the side in case of overturn impact, this value is more than 2 times as low as that in case of offset impact. But there is a great possibility of overturn by the buckling on both sides in case of overturn impact.

  • PDF

STRUCTURAL DEFORMATION EFFECT ON THE AERODYNAMICS OF A WING WITH WINGLETS (Winglet이 부착된 날개의 구조변형에 의한 공력 변화)

  • Lee, Y.M.;Kang, Y.J.;Jung, S.K.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.39-42
    • /
    • 2009
  • The aerodynamic characteristics of aircraft winglet with structural deformation was investigated using the static FSI(Fluid-Structure Interaction) system. The system, comprised of CAD, CFD, CSD, VSI, and grid regeneration modules, was constructed. In the process VSI, grid regeneration, and integration modules were developed to combine CSD and CFD modules. As a test model, KC-135A, the double winglet suggested by Whitcomb, was selected and its aerodynamic characteristics for the rigid and deformable models was calculated by applying the static FSI system. As a result, the lift and drag coefficients of test models were reduced to 11% and 1.3%, respectively.

  • PDF

Novel Mesh Regeneration Method Using the Structural Deformation Analysis for 3D Shape Optimization of Electromagnetic Device (전자소자의 3차원 형상최적화를 위한 구조변형 해석을 이용한 새로운 요소망 변형법)

  • Yao Yingying;Jae Seop Ryu;Chang Seop Koh;Dexin Xie
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.247-253
    • /
    • 2003
  • A novel finite element mesh regeneration method is presented for 3D shape optimization of electromagnetic devices. The method has its theoretical basis in the structural deformation of an elastic body. When the shape of the electromagnetic devices changes during the optimization process, a proper 3D finite element mesh can be easily obtained using the method from the initial mesh. For real engineering problems, the method guarantees a smooth shape with proper mesh quality, and maintains the same mesh topology as the initial mesh. Application of the optimum design of an electromagnetic shielding plate shows the effectiveness of the presented method.

Development of a Machining Error Estimation System for Vertical Lathes with Structural Deformation and Geometric Errors (구조변형과 기하학적 오차를 고려한 수직형 선반의 가공오차 해석시스템 개발)

  • 이원재;윤태선;김석일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.15-22
    • /
    • 1999
  • In this study, a machining error estimation system far vertical lathes with structural deformation and geometric errors, is realized based on the virtual manufacturing technologies. The positional and directional errors of cutting tool are determined by considering the geometric errors and dimensions of machine components and by introducing the equilibrium condition between the cutting force and structural deformation. Especially, the machining errors of vertical lathes are estimated by using the prescribed cutting test(JIS B 6331). The system can be implemented to evaluate the machining accuracies of vertical lathes at the design process and to design the high precision vertical lathes.

  • PDF

Development of a Machining Error Estimation System for Vertical Lathes with structural Deformation and Geometric Errors (구조변형과 기하학적 오차를 고려한 수직형 선반의 가공오차 해석시스템 개발)

  • 이원재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.146-151
    • /
    • 1998
  • In this study, a machining error estimation system for vertical lathes with structural deformation and geometric errors, is realized based on the virtual manufacturing technologies. The positional and directional errors of cutting tool are determined by considering the geometric errors and dimensions of machine components and by introducing the equilibrium condition between the cutting force and structural deformation. specially, the machining errors of vertical lathes are estimated by using the prescribed cutting test(JIS B 6331). The system can be implemented to evaluate the machining accuracies of vertical lathes at the design process and to design the high precision vertical lathes.

  • PDF