• 제목/요약/키워드: Structural cost

검색결과 2,111건 처리시간 0.027초

교량 유지관리비용 분석을 위한 대표 보수보강 비용모델 개발 (Development on Repair and Reinforcement Cost Model for Bridge Life-Cycle Maintenance Cost Analysis)

  • 선종완;이동열;박경훈
    • 한국산학기술학회논문지
    • /
    • 제17권11호
    • /
    • pp.128-134
    • /
    • 2016
  • 교량관리시스템(Bridge Management System, BMS)을 활용한 교량의 생애주기 관리를 위해서는 교량의 부재별 보수보강 비용 산정이 필수적이다. 본 연구에서는 BMS에 적용 가능한 체계적인 유지관리 비용 모델의 개발을 위하여 교량을 구성하는 대표 부재를 정의하고, 대표 부재별 세부 및 대표 보수보강 공법을 도출하였다. 세부 보수보강 공법별 단가를 산정하기 위해 표준 품셈과 실적 공사비를 이용해 각 세부 보수보강 공법별 일위대가를 구성하고, 적산 프로그램을 활용하여 보수보강 단가의 갱신이 용이하도록 체계적인 절차를 제시하였다. 또한 세부 보수보강 공법별 단가와 적용 빈도를 고려해 가중 평균 형태로 대표 보수보강 공법의 평균 단가를 산정하였다. 도출된 평균 단가를 기존의 실적 비용 단가와 비교 검증하여 적정성을 검토하였다. 제안된 평균 보수보강 비용 단가는 교량 유지관리 계획 수립 단계에서 요구 예산의 타당성을 검증하거나 보수보강 실적 비용의 적정성을 검토하는 데 활용될 수 있다. 본 연구를 통해 유지관리 비용 정보의 신뢰도와 의사결정의 합리성을 증진시킬 수 있을 것으로 판단된다.

Investigation of the effects on earthquake behavior and rough construction costs of the slab type in reinforced concrete buildings

  • Gursoy, Senol;Uludag, Omer
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.333-343
    • /
    • 2020
  • In the architectural design process, the selection and configuration of the structural system significantly affect the earthquake behaviours of the reinforced concrete buildings. The main purpose of this study, the effects on the earthquake performances and the rough construction cost of the buildings of the slab type in reinforced concrete buildings are to examine comparatively for different local soil classes. The results obtained from this study have been determined that the building model having slabs with beams is safer compared to other types of slabs, especially when considering the vertical bearing structural elements (columns). It also shows that other types of slab, except for slab with beams, reduce the earthquake performances of reinforced concrete buildings, increase the displacement values, 1st natural vibration period values and the cost of rough construction. This matter reveals that slab type is quite important and the preference of beamed slabs in reinforced concrete buildings to be constructed in earthquake zones would be more appropriate in terms of safety and cost.

LCC를 고려한 강박스 거더의 최적설계 (Optimal Design of Steel Box Girders Considering LCC)

  • 안예준;이현섭;신영석;박장호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.339-346
    • /
    • 2004
  • This paper presents a method to minimize Life-Cycle Cost(LCC) of steel box girders. The LCC function considered in this paper includes initial cost, expected life-cycle maintenance cost and repair cost. A resistance force curve is derived from a condition grade curve of steel girders and optimal design of steel box girders is performed on the basis of derived resistance force curve. Also, in this paper annual costs of various case in LCC are compared and analyzed. It is concluded that the optimal design of steel box girders considering LCC by a presented method will lead to more economical and safer girders than conventional design.

  • PDF

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

협동 최적화 방법을 이용한 강상자형교의 생애주기비용 최적설계 (Optimum Life-Cycle Cost Design of Steel Box Girder Bridges Using Collaborative Optimization)

  • 조효남;민대홍;권우성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.201-210
    • /
    • 2001
  • In this study, large-scale distributed design approach for a life cycle cost (LCC) optimization of steel box girder bridges was implemented. A collaborative optimization approach is one of the multidisciplinary design optimization approaches and it has been proven to be best suited for distributed design environment. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost maintenance cost expected retrofit costs for strength, deflection and crack. To discuss the possibility of the application for the collaborative optimization of steel box girder bridges, the results of this algorithm are compared with those of single level algorithm. From the numerical investigations, the collaborative optimization approach proposed in this study may be expected to be new concepts and design methodologies associated with the LCC approach.

  • PDF

강상자형교의 생애주기비용 최적설계 (Life-Cycle Cost Optimization for Steel Box Girder Bridges)

  • 조효남;민대홍;권우성;정기영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.128-136
    • /
    • 2001
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost (LU) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and crack. To demonstrate the effect of LCC optimum design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges design. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to more rational, economical and safer design.

  • PDF

국내 컨테이너터미널의 비용특성 분석 연구 (Study on Cost characteristics of the Korea Container Terminal)

  • 김보경;최석우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 춘계학술대회
    • /
    • pp.240-241
    • /
    • 2019
  • 전 세계 물동량 둔화 및 항만 간 경쟁이 심화되는 가운데, 항만의 환경규제 강화 및 자동화 및 스마트화가 요구되면서 항만산업의 비용증가 요인들이 지속적으로 증가하고 있다. 따라서 본 연구에서는 항만산업의 주요 주체인 우리나라 컨테이너터미널 운영사의 비용자료를 직접 수집하였으며, 이를 통해 컨테이너터미널 운영사의 비용 구조적 특성을 분석하였다. 터미널 운영 규모별, 지역별, 부두 특성별 비용구조의 차이점을 살펴보고 그에 따른 시사점을 제시하였다.

  • PDF

인공지반에서 토양하중에 따른 건축구조물 골조원가의 비교연구 (A Comparative Study on the Costs of Structural Materials Based on Different Types of Soil Load on Artificial Ground)

  • 김도경;황지환
    • 한국조경학회지
    • /
    • 제29권6호
    • /
    • pp.72-81
    • /
    • 2002
  • The purpose of this study is to determine the impact of the soil load for artificial ground on a building's structural expenses. Three types of soil - 100% soil, soil mixed with 50% perlite, and 100% artificial soil - were used for this study. A one story concrete steel building specific to each soil load was designed, and then, the cost of steel and concrete used for the design was estimated. As the result of this study, the structural expenses in the case of 5:5 mixed soil can be reduced about 17% compare with 100% soil. Using artificial soil, the structural expenses can be cut about 32% compare to 100% soil and about 12% less when 5:5 mixed soil is used. However, considering total expense which includes the structural expense and soil expense, the expense of 5:5 mixed soil have an increase 25% compared with 100% soil. In the artificial soil, the total expense is 45% more expensive than 100% soil and 17% higher when 5:5 mixed soil is used because of the high unit price of artificial soil. This study expected substantial savings in structural cost as the soil-load was lightened. But, savings were significantly reduced because the unit price of the artificial soil is much more expensive than the price of the natural one. Therefore, further research on methods of reducing the unit price of the artificial soil should be conducted in order to extend green space on to artificial ground.

무선 MEMS 시스템을 이용한 구조물 식별 (System Identification of a Building Structure Using Wireless MEMS System)

  • 김홍진
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.458-464
    • /
    • 2008
  • The structural health monitoring has been gaining more importance in civil engineering areas such as earthquake and wind engineering. The use of health monitoring system can also provide tools for the validation of structural analytical model. However, only few structures such as historical buildings and some important long bridges have been instrumented with structural monitoring system due to high cost of installation, long and complicated installation of system wires. In this paper, the structural monitoring system based on cheap and wireless monitoring system is investigated. The use of advanced technology of micro-electro-mechanical system(MEMS) and wireless communication can reduce system cost and simplify the installation. Further the application of wireless MEMS system can provide enhanced system functionality and due to low noise densities. Identification results are compared to ones using data measured from traditional accelerometers and results indicate that the system identification using wireless MEMS system estimates system parameters accurately.

An efficient method to structural static reanalysis with deleting support constraints

  • Liu, Haifeng;Yue, Shigang
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1121-1134
    • /
    • 2014
  • Structural design is usually an optimization process. Numerous parameters such as the member shapes and sizes, the elasticity modulus of material, the locations of nodes and the support constraints can be selected as design variables. These variables are progressively revised in order to obtain a satisfactory structure. Each modification requires a fresh analysis for the displacements and stresses, and reanalysis can be employed to reduce the computational cost. This paper is focused on static reanalysis problem with modification of deleting some supports. An efficient reanalysis method is proposed. The method makes full use of the initial information and preserves the ease of implementation. Numerical examples show that the calculated results of the proposed method are the identical as those of the direct analysis, while the computational time is remarkably reduced.