• Title/Summary/Keyword: Structural brain imaging

Search Result 70, Processing Time 0.031 seconds

The Relationship between Harm Avoidance Temperament and Right Frontal and Left Parietal Lobes in Young Adults : A Cortical Thickness Analysis (젊은 성인에서 위험 회피 기질과 우전두엽 및 좌두정엽과의 관련성 : 피질두께 분석)

  • Kim, Da-Jung J.;Lyoo, Young-Wook;Park, Young-Jun;Ahn, Tae Joo;Choi, Byeong Joo;Shin, E-Kyung;Kim, Tae-Suk
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • Objectives : Increasing evidence suggests the presence of neurobiological bases for temperamental characteristics in humans. Brain correlates of harm avoidance(HA) have been most extensively studied using functional and structural brain imaging methods due to its potential link with anxiety and depressive disorders. To date, however, we are not aware of any reports that have examined the potential relationship between HA levels and regional cortical thickness. The aim of the current study is to examine the cortical thickness which is associated with HA temperament in healthy young subjects. Methods : Twenty-eight young, healthy individuals(13 men and 15 women, mean age, $29.4{\pm}6.3$ years) were screened for eligibility and administered the Korean version of the Cloninger's Temperament and Character Inventory and underwent high-resolution structural magnetic resonance imaging scanning. Results : HA was associated with cortical thickness in the right superior frontal cortex and in the left parietal cortex, adjusted for age and sex and corrected for multiple comparisons using the permutation testing method. Conclusion : Individual temperamental differences in HA are associated with structural variations in specific areas of the brain. The fact that these brain regions are involved in top-down modulations of subcortical fear reactions adds functional significance to current findings.

Double staining method for array tomography using scanning electron microscopy

  • Eunjin Kim;Jiyoung Lee;Seulgi Noh;Ohkyung Kwon;Ji Young Mun
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.14.1-14.6
    • /
    • 2020
  • Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast. Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.

Neural circuit remodeling and structural plasticity in the cortex during chronic pain

  • Kim, Woojin;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

Assisted Magnetic Resonance Imaging Diagnosis for Alzheimer's Disease Based on Kernel Principal Component Analysis and Supervised Classification Schemes

  • Wang, Yu;Zhou, Wen;Yu, Chongchong;Su, Weijun
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.178-190
    • /
    • 2021
  • Alzheimer's disease (AD) is an insidious and degenerative neurological disease. It is a new topic for AD patients to use magnetic resonance imaging (MRI) and computer technology and is gradually explored at present. Preprocessing and correlation analysis on MRI data are firstly made in this paper. Then kernel principal component analysis (KPCA) is used to extract features of brain gray matter images. Finally supervised classification schemes such as AdaBoost algorithm and support vector machine algorithm are used to classify the above features. Experimental results by means of AD program Alzheimer's Disease Neuroimaging Initiative (ADNI) database which contains brain structural MRI (sMRI) of 116 AD patients, 116 patients with mild cognitive impairment, and 117 normal controls show that the proposed method can effectively assist the diagnosis and analysis of AD. Compared with principal component analysis (PCA) method, all classification results on KPCA are improved by 2%-6% among which the best result can reach 84%. It indicates that KPCA algorithm for feature extraction is more abundant and complete than PCA.

A Study on the MEG Imaging (MEG 영상진단 검사에 관한 연구)

  • Kim, Jong-Gyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.2
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

Brain Imaging Provides Insight into the Neurobiology of Panic Disorder (공황장애의 뇌영상 및 신경생물학적 식견)

  • Park, Joo-Eon;Kang, Eun-Ho;Lee, In-Soo;Yu, Bum-Hee
    • Anxiety and mood
    • /
    • v.3 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • Panic disorder is a common psychiatric illness that causes considerable morbidity. However, the biological basis of panic disorder remains unclear. In this report, we present and summarize the current literature on functional neuroimaging studies related to the neurobiology of panic disorder. The findings were summarized and divided into six groups : (1) known brain structures related to anxiety, especially panic disorder ; (2) structural results ; (3) functional imaging studies at rest ; (4) functional imaging studies with challenge testing ; (5) neuroreceptor studies ; and (6) changes in the treatment of panic disorder. Based on the findings of these neuroimaging studies, it seems as though panic disorder involves the hippocampal and parahippocampal areas, including the amygdala, as well as some cortical regions, such as the temporal and prefrontal cortices. Panic disorder is known to be associated with an imbalance between the right and left hemispheres of the brain at rest or during panic attacks. During a panic attack, patients with panic disorder are likely to experience an increase in local activity in the cingulate, insula, midbrain, and so on. On the other hand, a widespread reduction in the cortical areas has also been reported in most provocation studies. Thus, panic disorder may be related to the excess activation of the fear networks in response to subtle environmental cues and insufficient inhibition from higher cortical control areas ; however ; further studies are recommended in order to fully understand the neurobiology of panic disorder.

  • PDF

Nano Bio Imaging for NT and BT

  • Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Understanding interfacial phenomena has been one of the main research issues not only in semiconductors but only in life sciences. I have been trying to meet the atomic scale surface and interface analysis challenges from semiconductor industries and furthermore to extend the application scope to biomedical areas. Optical imaing has been most widely and successfully used for biomedical imaging but complementary ion beam imaging techniques based on mass spectrometry and ion scattering can provide more detailed molecular specific and nanoscale information In this presentation, I will review the 27 years history of medium energy ion scattering (MEIS) development at KRISS and DGIST for nanoanalysis. A electrostatic MEIS system constructed at KRISS after the FOM, Netherland design had been successfully applied for the gate oxide analysis and quantitative surface analysis. Recenlty, we developed time-of-flight (TOF) MEIS system, for the first time in the world. With TOF-MEIS, we reported quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS conjugated QDs and ultra shallow junctions and FINFET's of As implanted Si. With this new TOF-MEIS nano analysis technique, details of nano-structured materials could be measured quantitatively. Progresses in TOF-MEIS analysis in various nano & bio technology will be discussed. For last 10 years, I have been trying to develop multimodal nanobio imaging techniques for cardiovascular and brain tissues. Firstly, in atherosclerotic plaque imaging, using, coherent anti-stokes raman scattering (CARS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) multimodal analysis showed that increased cholesterol palmitate may contribute to the formation of a necrotic core by increasing cell death. Secondly, surface plasmon resonance imaging ellipsometry (SPRIE) was developed for cell biointerface imaging of cell adhesion, migration, and infiltration dynamics for HUVEC, CASMC, and T cells. Thirdly, we developed an ambient mass spectrometric imaging system for live cells and tissues. Preliminary results on mouse brain hippocampus and hypotahlamus will be presented. In conclusions, multimodal optical and mass spectrometric imaging privides overall structural and morphological information with complementary molecular specific information, which can be a useful methodology for biomedical studies. Future challenges in optical and mass spectrometric imaging for new biomedical applications will be discussed.

  • PDF

Trends in Brain Imaging Research on Refugees with Post-Traumatic Stress Disorder: A Scoping Review (외상 후 스트레스 장애 난민에 관한 뇌 영상 연구 동향: 주제범위 문헌고찰)

  • Yun, Jin Soo;Kim, Min Su;Chu, Sang Hui
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.159-169
    • /
    • 2021
  • Purpose: The purpose of this study was to analyze research trends and find whether Post-Traumatic Stress Disorder (PTSD) of refugees could affect structural or functional changes of brains of those under MRI, focusing on volumes, functional connectivities, and metabolites. Methods: A literature search was done using PubMed, Embase, RISS, and KMBase to identify studies that matched our research purpose. A total of eight studies were identified using Prisma flow diagram by two reviewers independently. Results: Eight studies were identified. Three studies were on North Korean defectors as subjects. The number of studies that observed structural changes, functional changes, and metabolite changes in brains was 2, 5, and 2, respectively. Although each study observed various parts of the brain, anterior cingulate cortex (ACC) was observed commonly in three studies. The PTSD group showed reduction of ACC volume and N-acetyl-aspartate (NAA) metabolite in ACC compared to the non- PTSD group. When exposed to negative stimuli, the PTSD group showed higher neural activity than the non-PTSD group, but not vice versa. Conclusion: ACC showed significant difference in volume, neural activity, and NAA metabolite between the PTSD and the non-PTSD group, resulting in significant differences in structural changes, functional changes, metabolite changes, respectively. This study showed the need for conducting more research using various biomarkers to clarify the relationship between PTSD of refugees and their brain changes.

Analysis and 3D Reconstruction of a Cerebral Vascular Network Using Image Threshold Techniques in High-resolution Images of the Mouse Brain (쥐 뇌의 고해상도 이미지에서 임계화 기법을 활용한 뇌혈관 네트워크 분석 및 3D 재현)

  • Lee, Junseok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.992-999
    • /
    • 2019
  • In this paper, I lay the foundation for creating a multiscale atlas that characterizes cerebrovasculature structural changes across the entire brain of a mouse in the Knife-Edge Scanning Microscopy dataset. The geometric reconstruction of the vascular filaments embedded in the volume imaging dataset provides the ability to distinguish cerebral vessels by diameter and other morphological properties across the whole mouse brain. This paper presents a means for studying local variations in the small vascular morphology that have a significant impact on the peripheral nervous system in other cerebral areas, as well as the robust and vulnerable side of the cerebrovasculature system across the large blood vessels. I expect that this foundation will prove invaluable towards data-driven, quantitative investigations into the system-level architectural layout of the cerebrovasculature and surrounding cerebral microstructures.