• 제목/요약/키워드: Structural behavior analysis

검색결과 3,706건 처리시간 0.026초

Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect

  • Liu, Hongbo;Chen, Zhihua;Xu, Shuai;Bu, Yidu
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.121-133
    • /
    • 2015
  • The aluminum dome has been widely used in natatorium, oil storage tank, power plant, coal, as well as other industrial buildings and structures. However, few research has focused on the structural behavior and design method of this dome. At present, most designs of aluminum alloy domes have referred to theories and methods of steel spatial structures. However, aluminum domes and steel domes have many differences, such as elasticity moduli, roof structures, and joint rigidities, which make the design and analysis method of steel spatial structures not fully suitable for aluminum alloy dome structures. In this study, a stability analysis method, which can consider structural imperfection, member initial curvature, semi-rigid joint, and skin effect, was presented and used to study the stability behavior of aluminum dome structures. In addition, some meaningful conclusions were obtained, which could be used in future designs and analyses of aluminum domes.

Sensitivity analysis of mechanical behaviors for bridge damage assessment

  • Miyamoto, Ayaho;Isoda, Satoshi
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.539-558
    • /
    • 2012
  • The diagnosis of bridge serviceability is carried out by a combination of in-situ visual inspection, static and dynamic loading tests and analyses. Structural health monitoring (SHM) using information technology and sensors is increasingly being used for providing a better estimate of structural performance characteristics rather than above traditional methods. Because the mechanical behavior of bridges with various kinds of damage can not be made clear, it is very difficult to estimate both the damage mode and degree of damage of existing bridges. In this paper, the sensitivity of both static and dynamic behaviors of bridges are studied as a measure of damage assessment through experiments on model bridges induced with some specified artificial damages. And, a method of damage assessment of bridges based on those behaviors is discussed in detail. Finally, based on the results, a possible application for structural health monitoring systems for existing bridges is also discussed.

강제 교각의 거동에 관한 연구 (A Study on the Structural Behavior of Welded Box Columns)

  • 김인한;손용석;엄진호;송준엽;권영봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 1999
  • The structural behavior of welded steel box columns subjected to axial compression and combined load of axial and horizontal load is described. The nonlinear stress-strain relation of the material and residual stress resulted from welds were included in the analysis. Inelastic buckling analysis of hollow rectangular sections of various width-thickness and slenderness ratios was carried out using the semi-analytical and spline finite strip method to investigate the local and global bucking stress and mode interaction. The buckling stress was compared with test results and design curves. Post-buckling behavior was traced by the finite element program(ADINA) and compared with experimental results. The comparison showed that the ultimate stress can be used for the design purpose.

  • PDF

원전 부착식 텐던 격납건물의 구조거동 분석기법 개발 I-CANDU형 (Development of Analysis Technique for Structural Behavior of Containment with Bonded-Type Tendons (CANDU Type))

  • 이상근;박상순;이상민;조명석;송영철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.643-646
    • /
    • 2004
  • The posttensioning system of nuclear containment have to be verified its structural integrity by the periodic inspection because the structural behavior of the containment is changed by the variation of the physical property of concrete and tendon as time passes. In this study a program 'SAPONC-CANDU' which is able to monitor and analysis the micro structural behavior of the domestic CANDU type containment at all times was developed. The readings of vibrating-wire strain gauges embedded into the concrete of containment were used as input data for operating the program. This program provides the long-term prediction values and bands of the concrete strain due to the time dependent factors of the concrete and tendon of the domestic CANDU type containment.

  • PDF

Effects of tensioning forces on the structural behavior of cable-stayed bridges

  • Lam, Pauline Lin Li;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.457-464
    • /
    • 2022
  • Optimization in distribution of stay cable forces is one of the most difficult aspects in the design of cable-stayed bridges. This article attempts to examine tension force influence on structural behavior of cable-stayed bridges. For the examination, finite element modeling using nonlinear static and nonlinear modal analyses was completed and compared to structural experimental results. Variables analyzed in this parametric study were: 1) Number of stay cables; 2) Tension of the stay cables, and 3) Stay cable pattern - harp and semi-fan patterns. Though the findings from the analysis are limited to the tested models, the study gives insight on the structural behavior of actual cable stayed bridges.

남성의 대인관계성향, 외모관심, 외모관리행동의 관련성 연구 (Study on the relationship of Interpersonal Relations Disposition, Appearance Concern, Appearance Management Behavior of Men)

  • 이현옥;구양숙
    • 복식
    • /
    • 제65권7호
    • /
    • pp.118-128
    • /
    • 2015
  • The purpose of this study was to identify the relationship of interpersonal relations disposition, appearance concern, appearance management behavior of men through a structural study method. Three hypotheses were established to verify the relationships among interpersonal relations disposition, appearance concern and appearance management behavior. The questionnaires were administered in the city of Daegu to 201 males in their 20s to 50s. The SPSS 20.0 package was utilized for data analysis, which included frequency analysis, factor analysis, correlation analysis and Cronbach's ${\alpha}$. Also, Amos 21.0 program was utilized for a confirmative factor analysis( CFA) and a structural equation modeling(SEM) analysis. The results of this study are as follows; First, interpersonal relations disposition showed a positive influence on appearance concern. Second, appearance concern had a positive influence on appearance management behavior. Third, the interpersonal relations disposition showed a positive influence on appearance management behavior. In conclusion, interpersonal relations disposition, appearance concern, appearance management behavior of men are found to have a correlation.

HHT를 이용한 이상거동 시점 추정 기법 개발 (Development of Abnormal Behavior Monitoring of Structure using HHT)

  • 김태헌;박기태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.92-98
    • /
    • 2015
  • 최근의 건축물은 복합적인 기능과 형태를 보이고 있으며, 크기가 거대해짐에 따라 구조물 건전성 감시 (Structural Health Monitoring)기술의 수요 또한 증가하고 있다. 구조물마다 고유한 동특성을 가지고 있으며, 다양한 외력의 영향을 받기 때문에 구조물의 건전성을 평가하는 다양한 방법들이 연구되고 있다. 이상거동 시점이란 구조물이 비정상적 (Abnormal)으로 진동하는 시점으로 손상을 명확히 검출하기 위해서는 이상거동의 시점을 기준으로 전과 후를 비교하여야 한다. 즉, 이상거동은 구조물 손상의 이상 징후이며, 정확한 이상거동 시점의 추정은 구조물의 안전과 직결될 수 있다. 이상 거동은 손상을 유발하고 이는 곧 막대한 경제적 피해 및 심각한 인명 피해로 이어지므로 본 연구에서는 시간-주파수 신호분석 기법인 힐버트-황 변환을 이용한 이상거동 시점 추정 기법을 제안하고 진동대를 이용한 모형실험을 통해 제안한 알고리즘의 검증을 수행하였다.

Non-stochastic interval factor method-based FEA for structural stress responses with uncertainty

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.703-708
    • /
    • 2017
  • The goal of this study is to evaluate behavior uncertainties of structures by using interval finite element analysis based on interval factor method as a specific non-stochastic tool. The interval finite element method, i.e., interval FEM, is a finite element method that uses interval parameters in situations where it is not possible to get reliable probabilistic characteristics of the structure. The present method solves the uncertainty problems of a 2D solid structure, in which structural characteristics are assumed to be represented as interval parameters. An interval analysis method using interval factors is applied to obtain the solution. Numerical applications verify the intuitive effectiveness of the present method to investigate structural uncertainties such as displacement and stress without the application of probability theory.

단부구속도에 따른 철골 접합부의 모멘트-회전각 관계에 관한 연구 (Moment-Rotation Relation of Steel Connections with Fixed-End Restraint)

  • 안형준;김건옥
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.219-223
    • /
    • 2002
  • The actual behavior of joint is traditionally disregarded in steel frame design. In fact, the structural analysis of steel frames is generally carried out by assuming that joints fulfil the ideal condition of either a hinge or a fixed-end restraints. In this way, calculations are made somewhat simpler, but the structural model is not able to reflect the actual structural response. Therefore, steel frame classification system for estimation or analysis about behavior of steel frame should be established, and range that each connections belongs should be divided definitely. This research presents realistic and practical moment-rotation relation through investigation and analysis of steel frame beam-to-column classification system.

Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading

  • Li, Guo-Qiang;Yang, Tao-Chun;Chen, Su-Wen
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.337-350
    • /
    • 2009
  • Finite element simulations are increasingly used in structural analysis and design, especially in cases where complex structural and loading conditions are involved. Due to considerable progresses in computer technology as well as nonlinear finite-element analysis techniques in past years, it has become possible to pursue an accurate analysis of the complex blast-induced structural effects by means of numerical simulations. This paper aims to develop a better understanding of the behavior of steel-concrete composite beams (SCCB) under localized blast loading through a numerical parametric study. A finite element model is set up to simulate the blast-resistant features of SCCB using the transient dynamic analysis software LS-DYNA. It is demonstrated that there are three dominant failure modes for SCCB subjected to localized blast loading. The effect of loading position on the behavior of SCCB is also investigated. Finally, a simplified model is proposed for assessing the overall response of SCCB subjected to localized blast loading.