• Title/Summary/Keyword: Structural behavior analysis

Search Result 3,737, Processing Time 0.025 seconds

Effects of Perimeter to Core Connectivity on Tall Building Behavior

  • Besjak, Charles;Biswas, Preetam;Petrov, Georgi I.;Streeter, Matthew;Devin, Austin
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The Pertamina Energy Tower (PET) and Manhattan West North Tower (MWNT) are two supertall towers recently designed and engineered by Skidmore, Owings & Merrill (SOM). The structural system for both buildings consists of an interior reinforced concrete core and a perimeter moment frame system, which is primarily structural steel. As is typical for tall towers with both concrete and steel elements, staged construction analysis was performed in order to account for the long term effects of creep and shrinkage, which result in differential shortening between the interior concrete core and steel perimeter frame. The particular design of each tower represents two extremes of behavior; PET has a robust connection between the perimeter and core in the form of three sets of outriggers, while the perimeter columns of MWNT do not reach the ground, but are transferred to the core above the base. This paper will present a comparison of the techniques used during the analysis and construction stages of the design process with the goal of understanding the differences in structural behavior of these two building systems in response to the long term effects of creep and shrinkage. This paper will also discuss the design and construction techniques implemented in order to minimize the differential shortening between the interior and exterior over the lifespan of these towers.

Effect of cable stiffness on a cable-stayed bridge

  • Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • Cables are used in many applications such as cable-stayed bridges, suspension bridges, transmission lines, telephone lines, etc. Generally, the linear relationship is inadequate to present the behavior of cable structure. In finite element analysis, cables have always been modeled as truss elements. For these types of model, the nonlinear behavior of cables has been always ignored. In order to investigate the importance of the nonlinear effect on the structural system, the effect of cable stiffness has been studied. The nonlinear behavior of cable is due to its sag. Therefore, the cable pretension provides a large portion of the inherent stiffness. Since a cable-stayed bridge has numerous degrees of freedom, analytical methods at present are not convenient to solve this type of structures but numerical methods may be feasible. It is necessary to provide a different and more representative analytical model in order to present the effect of cable stiffness on cable-stayed bridges in numerical analysis. The characteristics of cable deformation have also been well addressed. A formulation of modified modulus of elasticity has been proposed using a numerical parametric study. In order to investigate realistic bridges, a cable-stayed bridge having the geometry similar to that of Quincy Bayview Bridge is considered. The numerical results indicate that the characteristics of the cable stiffness are strongly nonlinear. It also significantly affects the structural behaviors of cable-stayed bridge systems.

Evaluation of Dorim-Goh bridge using ambient trucks through short-period structural health monitoring system

  • Kaloop, Mosbeh R.;Hwang, Won Sup;Elbeltagi, Emad;Beshr, Ashraf;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.347-359
    • /
    • 2019
  • This paper aims to evaluate the behavior of Dorim-Goh bridge in Seoul, Korea, under static and dynamic loads effects by ambient trucks. The prestressed concrete (PSC) girders and reinforcement concrete (RC) slab of the bridge are evaluated and assessed. A short period monitoring system is designed which comprises displacement, strain and accelerometer sensors to measure the bridge performance under static and dynamic trucks loads. The statistical analysis is used to assess the static behavior of the bridge and the wavelet analysis and probabilistic using Weibull distribution are used to evaluate the frequency and reliability of the dynamic behavior of the bridge. The results show that the bridge is safe under static and dynamic loading cases. In the static evaluation, the measured neutral axis position of the girders is deviated within 5% from its theoretical position. The dynamic amplification factor of the bridge girder and slab are lower than the design value of that factor. The Weibull shape parameters are decreased, it which means that the bridge performance decreases under dynamic loads effect. The bridge girder and slab's frequencies are higher than the design values and constant under different truck speeds.

Impacts of Fashion Products Attributes and Mobile Shopping Mall Attributes on Impulse Buying Behavior and Satisfaction in Mobile Fashion Shopping Mall (모바일 패션 쇼핑몰에서 패션제품 속성과 모바일 쇼핑몰 속성이 충동구매 행동 및 만족에 미치는 영향)

  • Park, Eunjoo;Kang, Eunmi
    • Fashion & Textile Research Journal
    • /
    • v.18 no.2
    • /
    • pp.158-166
    • /
    • 2016
  • This study investigates the impact of fashion product attributes and mobile shopping mall attributes on impulse buying behavior and mobile shopping satisfaction. The findings provide new information to marketers on marketing strategy for mobile shopping malls. We obtained 283 usable questionnaires from college students. Data were analyzed by frequency analysis, correlation analysis, factor analysis using SPSS for Window 21.0 and confirmatory factor analysis and structural equation model analysis by AMOS 21.0. The results were as follows. The utility of fashion products attributes had the greatest impact on impulse buying behavior when buying fashion products in a mobile mall. Utility had a negative effect on impulsive buying behavior and exhibitionistic had a positive effect on impulsive buying behavior. Next, continuous management of mobile shopping mall attributes influenced impulse buying behavior. In addition, impulse buying behavior showed that the positive effect on satisfaction. Fashion product attributes had a greater impact on impulsive buying behavior than mobile mall properties when buying fashion products in the mobile mall; in addition, impulse buying facilitated customer satisfaction.

Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP

  • Hamdy, Gehan A.;Kamal, Osama A.;El-Hariri, Mohamed O.R.;El-Salakawy, Tarik S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.611-619
    • /
    • 2018
  • This paper addresses numerical modeling and nonlinear analysis of unreinforced masonry walls and vaults externally strengthened using fiber reinforced polymers (FRP). The aim of the research is to provide a simple method for design of strengthening interventions for masonry arched structures while considering the nonlinear behavior. Several brick masonry walls and vaults externally strengthened by FRP which have been previously tested experimentally are modeled using finite elements. Numerical modeling and nonlinear analysis are performed using commercial software. Description of the modeling, material characterization and solution parameters are given. The obtained numerical results demonstrate that externally applied FRP strengthening increased the ultimate capacity of the walls and vaults and improved their failure mode. The numerical results are in good agreement with the experimentally obtained ultimate failure load, maximum displacement and crack pattern; which demonstrates the capability of the proposed modeling scheme to simulate efficiently the actual behavior of FRP-strengthened masonry elements. Application is made on a historic masonry dome and the numerical analysis managed to explain its structural behavior before and after strengthening. The modeling approach may thus be regarded a practical and valid tool for design of strengthening interventions for contemporary or historic unreinforced masonry elements using externally bonded FRP.

Correlation of Experimental and Analytical Inelastic Responses of A 1:12 Scale 10-Story Reinforced Concrete Frame-Wall Structure (1:12축소 10층 철근콘크리트 골조-벽식 구조의 비선형 거동에 대한 실험과 해석의 상관성)

  • 이한선;김상호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.119-126
    • /
    • 2000
  • Reinforced concrete structural walls are widely known to provide an efficient lateral load resistance and drift control. However, many reported researches on them are mostly limited to the RC structural walls reinforced according to seismic details. When the pushover analysis technique is used for the prediction of inelastic behavior of frame-wall structures for the seismic evaluation of existing buildings having non-seismic details, the reliability of this analysis method should be checked by the test results. The objective of this study is to verify the correlation between the experimental and analytical responses of a high-rise reinforced concrete frame-wall structure having non-seismic details by using DRAIN-2DX program[11] and the test results performed previously[1]. It is concluded that the behavior of the frame-wall model is mainly affected by the fixed-end rotation(uplift at base) and bending deformation of the wall and that the analysis with the LINKS model[10] in DRAIN-2DX describes them with good reliability.

Performance Evaluation of Steel Moment Frame and Connection including Inclined Column (경사기둥을 포함한 철골모멘트 골조 및 접합부의 성능평가)

  • Kim, Yong-Wan;Kim, Taejin;Kim, Jongho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.173-182
    • /
    • 2013
  • The building design projects which are being proceeded nowadays pursue a complex and various shape of structures, escaping from the traditional and regular shape of buildings. In this new trend of the architecture, there rises a demand of the research in the structural engineering for the effective realization of such complex-shaped buildings which disassembles the orthogonality of frames. As a distinguished characteristics of the buildings in a complex-shape, there frequently are inclined columns included in the structural frame. The inclined column causes extra axial force and bending moment at the beam-column connection so it is necessary to assess those effects on the structural behavior of the frame and the connection by experiment or analysis. However, with comparing to the studies on the normal beam-column connections, the inclined column connections have not been studied sufficiently. Therefore, this study evaluated the beam-column connections having an inclined column using nonlinear and finite element analysis method. In this paper, steel moment frames having inclined columns were analyzed by the nonlinear pushover analysis to check the global behavior and beam-column connection models were analyzed by the finite element analysis to check the buckling behavior and the fracture potentials.

Behavior of Composite Structure by Nonlinearity of Steel - concrete Interface (I) -Parametric Study for Nonlinear Model of Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동(I) -비선형 경계면 모델에 따른 매개변수 연구-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.499-507
    • /
    • 2003
  • As the load is increased on the steel-concrete composite structure, its interface begins to show nonlinear behavior due to the reduction of interaction, micro-crack, slip and separation, and it causes slip-softening, Therefore, it is essential to consider the partial-interaction analysis technique. Until now, however, full-interaction or, in some instances, the linear-elastic model, which are insufficient to simulate accurate behavior, are assumed in the analysis of composite structure since the analysis method and nonlinear model for interface are very difficult and complicated. Therefore, the design of composite structure is followed by the experimental method which is inefficient-because a number of tests have to be carried out according to the design environments. In this study, we carried out the nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed more accurate structural behavior and performance by maximum tangential traction and slip-softening at the interface. As a result of this study. we were able to prove that the nonlinear model of interface more exactly represents behavior after yielding, such as ultimate load: that initial tangential stiffness of interface has a significant effect on the yielding load of structural members or part: and that the maximum tangential traction and slip-softening mainly effects structural yielding and ultimate load. Therefore, the structural performance of composite structure is highly dependent on the steel-concrete interface or interaction, which may result in initial tangential stiffness, maximum tangential traction and slip-softening in nonlinear model.

Geometrically Nonlinear Dynamic Analysis of Suspension Bridges Considering Construction Sequences (현수교의 기하학적 비선형을 고려한 동적 밀 시공단계별 해석)

  • 방명석
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.148-157
    • /
    • 1999
  • Dynamic structural behavior in long span bridges, especially cable structures, is very sophisticated due to their flexibility and structural members are sequentially erected in each construction step. In this study, the consistent mass matrix for dynamic analysis is formulated and computational program considering construction sequences is developed where structural members can be builded or removed by command language and automatically reanalyzed in the moment when structural system is changed. The dynamic analysis, i.e. eigenvalue and time series analysis and the geometrically nonlinear analysis considering construction sequence are conducted to the Namhae Bridge. The analytical results are satisfactory compared with measuring values and the developed computational program can successfully be applied to design and safety check.

  • PDF

Structural Analysis of Seismic Isolation Bearings for Liquid Metal Reactor (액체금속로용 면진베어링의 구조해석)

  • Kim, Jong-In;Yoo, Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.186-192
    • /
    • 1993
  • Proto-type seismic isolation rubber bearings are investigated through nonlinear hyperelasticity finite elements using the ANSYS general purpose structural analysis code. The purpose of the analysis was to determine the maximum horizontal strain range which can be obtained with a 250KN hydraulic actuator. A Mooney-Rivlin strain energy density function was used as a constitutive law for rubber. The results are compared with the test data available in the literature and found to in good agreement only in the higy strain range. The analysis results can be used with conservatism to predict the necessary force required to a specified displacement such as the purpose of this analysis. However, more precise constitutive model will be required to simulate the bearing behavior with accuracy in the mid-range strain.

  • PDF