• 제목/요약/키워드: Structural Weight

Search Result 2,484, Processing Time 0.027 seconds

Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid

  • Shafiee, Ali A.;Daneshmand, Farhang;Askari, Ehsan;Mahzoon, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.53-71
    • /
    • 2014
  • A semi-analytical method is developed to consider free vibrations of a functionally graded elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is taken into account and natural frequencies and mode shapes of the coupled system are acquired by employing energy methods. The results obtained from the present approach are verified by those from a finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

Perforation threshold energy of carbon fiber composite laminates

  • Hwang, Shun-Fa;Li, Jia-Ching;Mao, Ching-Ping
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • Two carbon fiber composite laminates, $[0/90]_{2S}$ and $[0/+45/90/-45]_S$, were considered in this work to find out the perforation threshold energy to complete the perforation process and the corresponding maximum contact force. Explicit finite element commercial software, LS-DYNA, was used to predict these values. According to the simulation results, these two types of composite laminates were tested by using a vertical drop-weight testing machine. After testing, the damage condition of these specimens were observed and compared with the results from finite element analysis. The testing results indicate that the perforation threshold energy is 6 Joules for $[0/90]_{2S}$ and 7 Joules for $[0/+45/90/-45]_S$, which is in good agreement with the simulation results. Also, the maximum contact force at the case of perforation threshold energy is the lowest as compared to the maximum contact forces occurring at the impact energy that is larger or less than the perforation threshold energy.

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

Effects of Irradiation Crosslinking and Molecular Weight Properties on Crosslinked PP Foaming Process (전자선 조사량과 분자량 특성이 전자선 가교 PP 발포 가공에 미치는 영향)

  • 홍다윗;윤광중;백운선;정영헌;이준길
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.508-515
    • /
    • 2002
  • The effects of the crosslinking caused by irradiation dose, molecular weights of the foaming materials, and various foaming processes on the foam structure of the polypropylene (PP) were investigated. The maximum gel content of the PP was 48% when the sheet was irradiated with 3.2 Mrad. This high gel content improved the cell structures by providing high thermal stability. The increase of both the gel content and structural development were stopped at the irradiation dose exceeding 3.2 Mrad. The increase of the molecular weights served to help produce a foam with particularly fine and even cell structures, along with improved thermal stability as well.

A Study on the Welding Process of Aluminum Alloy (알루미늄합금 용접공정기술 연구)

  • Kim Namin;Lim Dong-Yong;Lee Jeong-Soo;Choe Woo-Hyeon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.211-215
    • /
    • 2005
  • The binary Al-Mg alloys are the basis for the 5000 series of non-heat-treatable aluminum alloys. In general, 5000 series of aluminum alleys have a high strength, good welding characteristics and a high resistance to corrosion, especially under the seawater. Thus the aluminum alloys are adopted in the hull material of hovercraft that is required light in weight as well as high strength. It is very important that the weldability problem of these alloys caused by high thermal conductivities welding deformation, porosity and so on. in this study, auto-welding equipment was applied for aluminum welding automation. Also, optimal welding data were studied by investigating welding characteristics for various shapes of weldment to use Al 5083 that is representative structural materials of the 5000 series of aluminum alloys.

  • PDF

Concurrent engineering solution for the design of ship and offshore bracket parts and fabrication process

  • Kim, Tae-Won;Lim, Sang-Sub;Seok, Ho-Hyun;Kang, Chung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.376-391
    • /
    • 2013
  • Brackets in ships and offshore structures are added structures that can endure stress concentrations. In this study, a concurrent engineering solution was proposed, and a high strength low carbon cast steel alloy applicable to offshore structures was designed and developed. The yield strength and ultimate tensile strength of the designed steel were 480 and 600 MPa, respectively. The carbon equivalent of the steel was 0.446 with a weld crack susceptibility index of 0.219. The optimal structural design of the brackets for offshore structures was evaluated using ANSYS commercial software. The possibility of replacing an assembly of conventional built-up brackets with a single casting bulb bracket was verified. The casting process was simulated using MAGMAsoft commercial software, and a casting fabrication process was designed. For the proposed bulb bracket, it was possible to reduce the size and weight by approximately 30% and 50%, respectively, compared to the conventional type of bracket.

Development of 600-MHz 19F-7Li Solid-State NMR Probe for In-Situ Analysis of Lithium Ion Batteries

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3253-3256
    • /
    • 2013
  • Lithium is a highly attractive material for high-energy-concentration batteries, since it has low weight and high potential. Rechargeable lithium-ion batteries (LIBs), which have the extremely high gravimetric and volumetric energy densities, are currently the most preferable power sources for future electric vehicles and various portable electronic devices. In order to improve the efficiency and lifetime, new electrode compounds for lithium intercalation or insertion have been investigated for rechargeable batteries. Solid-state nuclear magnetic resonance (NMR) is a very useful tool to investigate the structural changes in electrode materials in actual working lithium-ion batteries. To detect the in-situ microstructural changes of electrode and electrolyte materials, $^7Li-^{19}F$ double-resonance solid-state NMR probe with a static solenoidal coil for a 600-MHz narrow-bore magnet was designed, constructed, and tested successfully.

Corrosion Mechanisms of New Wrought Mg-Zn Based Alloys Alloying with Si, Ca and Ag

  • Ben-Hamu, G.;Eliezer, D.;Shin, K.S.;Wagner, L.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.152-157
    • /
    • 2008
  • New wrought magnesium alloys have increasingly been developed in recent years for the automotive industry due to their high potential as structural materials for low density and high strength/weight ratio demands. However, their poor mechanical properties and low corrosion resistance have led to a search for new kinds of magnesium alloys with better strength, ductility, and high corrosion resistance. The main objective of this research is to investigate the corrosion behaviour of new magnesium alloys: Mg-Zn-Ag (ZQ), Mg-Zn-Mn-Si (ZSM) and Mg-Zn-Mn-Si-Ca (ZSMX). These ZQ6X, ZSM6X1, and ZSM651+YCa alloys were prepared using hot extrusion. AC, DC polarization and immersion tests were carried out on the extruded rods. Microstructure was examined using optical and electron microscopy (SEM) and EDS. The addition of silver decreased the corrosion resistance. The additions of silicon and calcium also affected the corrosion behaviour. These results can be explained by the effects of alloying elements on the microstructure of Mg-Zn alloys such as grain size and precipitates caused by the change in precipitation and recrystallisation behaviour.

Engineering of Guangzhou International Finance Centre

  • Kwok, Michael;Lee, Alexis
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.49-72
    • /
    • 2017
  • The Guangzhou International Finance Centre (IFC) is a landmark building that symbolizes the emerging international strength of Guangzhou, China's third largest city. It is also one of the dual iconic towers along the main axis of Guangzhou Zhujiang New Town. Arup adopted a total engineering approach in embracing sustainability and aiming at high efficiency solutions based on performance-based design principles covering structures, building services, fire engineering, vertical transportation, and façade performance to constitute an efficient and cost-effective overall building design. Through dynamic integration of architectural and engineering principles, Guangzhou IFC represents a pioneering supertall building in China. It adopts a diagrid exoskeleton structural form that is clearly expressed through the building's façade and gives the building its distinctive character. The aerodynamic shape of the building not only presents the aesthetic quality of elegant simplicity, but also reduces the effects of wind, thereby reducing the size and weight of the structure. State-of-the-art advanced engineering methods, such as optimization techniques and nonlinear finite element modelling, were applied in parallel with large-scale experimental programs to achieve an efficient and high-performance design taking into account the constructability and cost-effectiveness for a project of this scale.

Structural Optimum Design and Dynamic Behavior Analysis of Steering Support Flange for Azimuth Thruster (소형선박용 Azimuth 추진장치의 Steering Support Flange의 구조적 최적설계 및 동적거동에 관한 연구)

  • Son, J.D.;Choi, W.H.;Jung, Y.G.;Choi, B.K.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Recent, The propeller had high performance according as high performance of small ship. So, We has the development for azimuth thrusters. This Paper has structure improvement of steering support flange in azimuth thrusters. Steering support flange is very important part. because, Steering support flange supports all weight of azimuth thrusters. We has static & dynamic analysis of Steering support flange, and we discover the very safety. So, We has optimum design for the cost reduction. The first method of optimum design, We has the thickness reduce to 30mm from 5mm. Next method of optimum design, We had added stiffener. And we has the structure & dynamic behavior analysis. We had to dynamic behavior analysis. The first, We had to modal analysis. The result of 1st-modal analysis is that original model had to 76.48hz and new model had to 200.9hz. The second, We had to harmonic analysis. The result, We gave the thrust power to steering support flange. and We had to frequency analysis to $0{\sim}500hz$. The result, Deflection ration reduce to 16.64.

  • PDF